• Title/Summary/Keyword: High Power-Factor

Search Result 1,907, Processing Time 0.032 seconds

Active-clamp Class-E High Frequency Resonant Inverter with Single-st (단일 전력단으로 구성된 Active-clamp E급 고주파 공진 인버터)

  • Kang, Jin-Wook;Won, Jae-Sun;Kim, Dong-Hee;Ro, Chae-Gyun;Sim, Kwang-Yeal;Le, Bong-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1193-1195
    • /
    • 2002
  • This paper presents Active-clamp Class-E high frequency resonant inverter with single-stage. The proposed circuit is integrated Active-c class-E circuit to boost converter with the funct power factor correction. Boost converter is opera positive and negative half cycle respectively at frequency(60Hz), operating in Discontinuous Con Mode(DCM) of boost converter performs high p factor. By adding active-clamp circuit in Cl inverter, main switch of inverter part is operat only ZVS(Zero Voltage Switch), but also reduce switching voltage stress of main switch. Simulation result using Psim4.1 show that the p prove the validity of theoretical analysis. This proposed inverter will be able to be pract used as a power supply in various fields are ind heating applications, DC-DC converter etc.

  • PDF

Elimination of Harmonics Voltage-fed Inverter using Flyback Converter with Three-Phase High Power Factor (3상 고역률 Flyback 컨버터를 이용한 전압형 인버터의 고조파 제거)

  • Suh, K.Y.;Kwon, S.K.;Lee, H.W.;Ko, T.E.;Kim, Y.M.;Mun, S.P.;Jang, W.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2695-2697
    • /
    • 1999
  • A new three-phase voltage-fed inverter using partial resonant converter with high power factor and high efficiency is proposed. The proposed Flyback converter is constructed by using a resonant network in parallel with the switch of the conventional converter. The devices are switched zero voltage or zero current eliminating the switching loss. This paper introduces elimination of harmonics compared with conventional SPWM inverter and three-phase voltage-fed inverter using Flyback converter.

  • PDF

A Study on Novel Step-Up AC-DC Chopper of High Efficiency by using Lossless Snubber Capacitor (새로운 무손실 스너버 커패시터를 이용한 고효율 스텝 업 AC-DC 초퍼에 관한 연구)

  • Kwak, Dong-Kurl;Kim, Sang-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1103-1104
    • /
    • 2008
  • In this paper, authors propose a novel step-up AC-DC chopper operated with power factor correction (PFC) and with high efficiency. The proposed chopper behaves with discontinuous current control (DCC) of input current. The input current waveform in the proposed chopper is got to be a discontinuous sinusoid form in proportion to magnitude of ac input voltage under the constant duty cycle switching. Therefore, the input power factor is nearly unity and the control method is simple. In the general DCC chopper, the switching devices are turned-on with the zero current switching, but turn-off of the switching devices is switched at current maximum value. To achieve a soft switching of the switching turn-off, the proposed chopper is used a new partial resonant circuit. The result is that the switching loss is very low and the efficiency of chopper is high.

  • PDF

The study on the high performance continuous input current type PWM AC/DC boost converter using one semiconduction switch (단일 스위칭소자를 이용한 전류연속형 PWM AC/DC 부스터 콘버어터의 고역율 구현에 관한 연구)

  • Park, Sung-Jun;Byun, Young-Bok;Kim, Kwang-Tae;Kwon, Soon-Jae;Kim, Cheul-U
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.379-381
    • /
    • 1995
  • Many new electronic products are required to have a near unity power factor and a distortion free input current waveform. In this paper, a high performance single phase PWM AC/DC converter with input power factor correction is proposed. This proposed control strategy has many advantages which include one semiconduction switch, simplified control circuit, high performance features and continuous input current. The experimental results are included to verify the validity of this approach.

  • PDF

Analysis of Soft Start-up Characteristics of the Induction Motor Considering the Firing Angle (점호각을 고려한 유도전동기의 소프트 기동 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1007-1012
    • /
    • 2016
  • Induction motors are used widely in driving load of a fluid, such as a pump or a fan in the industry. Induction motor has been generated the voltage drop by the occurrence of a high current during startup. In addition, high start-up current can act as a mechanical stress on the shaft of the motor. So there is need a way to reduce the starting current. Soft start method is one of the many ways to reduce the starting current. This method uses silicon-controlled rectifiers(SCRs) for varying value of the voltage applied to the motor. There is a case for fixing or changing the thyristor firing angle to adjust the magnitude of the voltage. Starting power factor of induction motor is very low compared to the normal operation. Soft starting with the firing angle fixed needs to be considered a low power factor at startup. In this study, we compared the direct start characteristics and soft start characteristics considering the low power factor at the time of start-up. It was possible to confirm that the starting current and the voltage drop is present differently according to the firing angle.

A Study on the High-Efficiency. High-Power-Factor AC/DC Boost Converter Using Energy Recovery (에너지 회생 스너버를 적용한 고효률, 고역률 AC/DC Boost 컨버터에 관한 연구)

  • Ryu, Chang-Gyu;Kim, Yong;Bae, Jin-Yong;Baek, Soo-Hyun;Choi, Geun-Soo;Gye, Sang-Bum
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.160-163
    • /
    • 2004
  • A passive lossless turn-on/turn-off snubber network is proposed for the boost PWM converter. Previous AC/DC PFC Boost Converter perceives feed forward signal of output for average current-mode control. Previous Boost Convertor, the Quantity of input current will be decreased by the decrease of output current in light load, and also Power factor comes to be decreased. Also the efficiency of converter will be decreased by the decrease of power factor. The proposed converter presents the good PFC, low line current harmonic distortions and tight output voltage regulations using energy recovery circuit. All of the semiconductor devices in the converter are turned on under exact or near zero voltage switching(ZVS). No additional voltage and current stresses on the main switch and main diode occur. To show the superiority of this converter is verified through the experiment with a 640W, 100kHz prototype converter.

  • PDF

Smoothing Filter Design Applying a Parameter of a Homo-polar Generator (단극발전기의 내부 인자를 적용한 평활필터 설계)

  • Kim, In-Soo;Seong, Se-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.409-415
    • /
    • 2007
  • For satisfying a recommended value of the quality factor which is one of the important elements in a filter design, a new design method of smoothing filter using an internal parameter of a homopolar generator is proposed. The method increases the efficiency and minimizes the size of the smoothing filter by removing the damping resistor. By considering the resonant frequency as well as the quality factor, the new method can improve the stability of the system which has high boosting converters with negative resistance characteristics.

The Control of Three Phase High Power Factor PWM converter using Reduced - Order Luenberger Observer (축소차원 Luenberger 관측기를 이용한 3상 PWM 컨버터의 고역률 제어)

  • Yang, Lee-Woo;Kim, Young-Cho;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2478-2480
    • /
    • 1999
  • In this paper, the authors propose a current control system for three phase PWM AC/DC converter without the source voltage sensors. The sinusoidal input current and unity effective power factor are realised based on the estimated source voltage in the controller. The estimation of source voltage is performed based on Luenberger observer using actual currents. The estimated source voltage is used to accomplish unity power factor. The proposed method is proved by simulations.

  • PDF

Study on Spindle Motor's Power-Factor and Frictional Characteristics For Cutting Force Monitoring in a CNC Machine (CNC 공작기계의 절삭력 감지를 위한 주축모터의 역률 및 마찰특성에 관한 연구)

  • 홍성함;이병휘;허건수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.141-146
    • /
    • 2002
  • Real-time monitoring and control of the cutting force is essential for unmanned cutting process. Although the cutting force can be measured directly using tool dynamometers, their implementation is not feasible in industry due to high cost. Alternative approach is the cutting force estimation based on spindle drive models, but it requires the knowledge of their characteristics with the spindle speed variation. This paper investigates the power-factor and frictional characteristics of three-phase induction motors and determines its characteristics below and above the base speed, respectively. In order to realize the proposed cutting force monitoring system, a stand-alone DSP board was utilized. Its monitoring and control performance is evaluated in a CNC lathe.

  • PDF

Switched Mode Control Technique for the Series Resonant Sigle-Phase Rectifier with Unity Power Factor (단위 역률을 갖는 직렬공진형 단상 정류기의 모드 변환 제어기법)

  • Jung, Young-Seok;Moon, Gun-Woo;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.850-852
    • /
    • 1993
  • A buck-boost zero current switched(ZCS) series resonant AC to DC converter for the DC output voltage regulation together with high power factor is proposed. A dynamic model for this AC to DC converter is developed and an analysis for the internal operational characteristics is explored. With the proposed control technique, the unity power factor and the DC output voltage regulation without a current overshoot can be obtained.

  • PDF