• Title/Summary/Keyword: High Power Switch

Search Result 790, Processing Time 0.028 seconds

High Power Factor and High Efficiency DC-DC Converter using Single-Pulse Soft-Switching (단일 펄스 소프트 스위칭을 이용한 고역률 고효율 DC-DC 컨버터)

  • Jung, S.H.;Kwon, S.K.;Suh, K.Y.;Lee, H.W.;Gac, D.K.;Kim, Y.C.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1148-1150
    • /
    • 2003
  • Power conversion system must be increased switching frequency in order to achieve a small size, a light weight and a low noise. However, the switches of converter are subjected to high switching power losses and switching stresses. As a result of those, the power system brings on a low efficiency. To improved these, a large number of soft switching topologies included a resonant circuit has been prosed. But these circuits increase number of switch in circuit and complicate sequence of switching operation. In this paper, the authors propose a high power factor and high efficiency DC-DC converter using single-pulse soft switching by partial resonant switching node. The switching devices in a prosed circuit are operated with soft switching by the partial resonant method, that is, Partial Resonant Switch Mode Power Converter. The partial resonant circuit makes use of a inductor using step up and a condenser of loss-less snubber. The result is that the switching loss is very low and the efficiency of system is high. Also the proposed converter is deemed the most suitable for high power applications where the power switching devices are used. Some simulative results on computer results are included to confirm the validity of the analytical results.

  • PDF

Full Wave Mode ZVT-PWM DC-DC Converters (전파형 ZVT-PWM DC-DC 컨버터)

  • 김태우;안희욱;김학성
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.243-249
    • /
    • 2001
  • This paper proposes a full wave mode ZVT-PWM boost converter. The converter with the auxiliary switch in a full wave mode makes possible soft switching operation of all switches including the auxiliary switch whereas the auxiliary switch is turned off with hard switching in the conventional converter. Therefore, the proposed converter reduces the turn-off switching loss and switching noise of the auxiliary switch without additional passive and/or active elements and high power density system can be realized.

  • PDF

25 kW, 300 kHz High Step-Up Soft-Switching Converter for Next-Generation Fuel Cell Vehicles (차세대 연료전지 자동차용 25kW, 300kHz 고승압 소프트 스위칭 컨버터)

  • Kim, Sunju;Tran, Hai Ngoc;Kim, Jinyoung;Kieu, Huu-Phuc;Choi, Sewan;Park, Jun-Sung;Yoon, Hye-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.404-410
    • /
    • 2021
  • This paper proposes a high step-up converter with zero-voltage transition (ZVT) cell for fuel cell electric vehicle. The proposed converter applies a ZVT cell to a dual floating output boost converter (DFOBC) so that not only the main switch but also the ZVT switch can achieve full-range soft switching. The current rating of the ZVT switch is 17% of the main switch. The proposed converter has high reliability in that no timing issue occurs. Therefore, online calculation is not required. The minimum turn-on time of the ZVT switch that guarantees soft switching at all loads and input/output voltage is obtained by analysis. In addition, the proposed DFOBC allows the use of a 650 V device even at 800 V output and has the advantage of being able to boost the voltage by 3.5 times with 0.56 duty. Planar coupled inductor with PCB winding was successfully implemented with the converter operated at 300 kHz. The 25 kW prototype achieves peak efficiency of 99% and power density of 63 kW/L.

A High-Efficiency Two-Switch Flyback Converter with Energy Recovery Snubbers (에너지 재생 스너버를 갖는 고효율 두 스위치 플라이백 컨버터)

  • Kim, Marn-Go;Jung, Young-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.489-490
    • /
    • 2010
  • A novel soft-switching two-switch flyback converter is proposed in this paper. This converter is composed of two active power switches, a flyback transformer, and two passive regenerative clamping circuits.The proposed converter has the advantages of a low cost circuit configuration, a simple control scheme, a high efficiency, and a wide operating range. The circuit topology and experimental results of the new flyback converter are presented.

  • PDF

Active-clamp Class-E High Frequency Resonant Inverter with Single-st (단일 전력단으로 구성된 Active-clamp E급 고주파 공진 인버터)

  • Kang, Jin-Wook;Won, Jae-Sun;Kim, Dong-Hee;Ro, Chae-Gyun;Sim, Kwang-Yeal;Le, Bong-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1193-1195
    • /
    • 2002
  • This paper presents Active-clamp Class-E high frequency resonant inverter with single-stage. The proposed circuit is integrated Active-c class-E circuit to boost converter with the funct power factor correction. Boost converter is opera positive and negative half cycle respectively at frequency(60Hz), operating in Discontinuous Con Mode(DCM) of boost converter performs high p factor. By adding active-clamp circuit in Cl inverter, main switch of inverter part is operat only ZVS(Zero Voltage Switch), but also reduce switching voltage stress of main switch. Simulation result using Psim4.1 show that the p prove the validity of theoretical analysis. This proposed inverter will be able to be pract used as a power supply in various fields are ind heating applications, DC-DC converter etc.

  • PDF

Resonant Capacitor On/Off Control of Half-Bridge LLC Converter for High Efficiency Server Power Supply (고효율 서버용 전원 장치를 위한 하프-브리지 LLC 컨버터의 공진 커패시터 온-오프 제어)

  • Lee, Jae-Bum;Baek, Jae-Il;Youn, Han-Shin;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.285-286
    • /
    • 2015
  • In this letter, a simple control method of the HB LLC converter with one additional switch and capacitor in the primary side is proposed for wide-input-voltage applications with the hold-up time conditions. At nominal input, since the proposed method enables the HB LLC converter to operate with large transformer magnetizing inductance, it can reduce the conduction and switch turn-off losses in the primary side, which makes a high efficiency. On the other hand, during the hold-up time, since the proposed method increases the resonant capacitance by turning on one additional switch, the HB LLC converter can obtain high voltage gain.

  • PDF

A Current Control Algorithm for Torque Ripple Reduction of Four-Switch Three-Phase Brushless DC Motors (4스위치 3상 BLDC 전동기의 토크 리플 저감을 위한 전류제어 알고리즘)

  • 박상현;김태성;이병국;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.126-133
    • /
    • 2004
  • In this paper, a new current control algorithm is proposed for four-switch three-phase brushless DC(BLDC) motor drives, which are suitable for low cost applications. A current reference generation scheme is developed and implemented to obtain high performance characteristics in the four-switch system, such as small torque ripple and fast dynamic speed/torque response. Especially, the proposed scheme can successfully reduce the torque ripple during commutations, so that it can be expected that the four-switch system can be much more practically applied for the industrial application areas.

A Study on Switching Characteristics of Active Clamp Type Flyback Converter with Synchronous Rectifier Driving Signals Controlling Auxiliary Switch (보조스위치가 동기정류기 구동 신호로 제어되는 능동 클램프형 플라이백 컨버터의 스위칭 특성에 관한 연구)

  • Ahn, Tae Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.21-26
    • /
    • 2018
  • In this paper, the switching characteristics of the active clamp type flyback converter, which is deemed suitable for the miniaturization of the external power supply for home appliance, were analyzed and the process of reducing the switching loss was explained. The active clamp type flyback converter operating in the DCM has confirmed that the surge voltage of the main switch does not occur and the turn-off / on loss of the switch do not occur in principle. Also, in the case of the switch for synchronous rectifier, it was showed that the switch current showed half-wave rectified sinusoidal characteristic, and the switching loss was reduced. The switching characteristics of the experimental results gathered from 120 W class prototype were compared with the theoretical waveform in the steady-state and it was confirmed that the power conversion efficiency of the active clamp type flyback converter was maintained high due to the reduction of the switching loss.

An Eight-Way Radial Switch Based on SIW Power Divider

  • Lee, Dong-Mook;An, Yong-Jun;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.3
    • /
    • pp.216-222
    • /
    • 2012
  • This paper presents a single-pole eight-throw switch, based on an eight-way power divider, using substrate integrate waveguide(SIW) technology. Eight sectorial-lines are formed by inserting radial slot-lines on the top plate of SIW power divider. Each sectorial-line can be controlled independently with high level of isolation. The switching is accomplished by altering the capacitance of the varactor on the line, which causes different input impedances to be seen at a central probe to each sectorial line. The proposed structure works as a switching circuit and an eight-way power divider depending on the bias condition. The change in resonant frequency and input impedance are estimated by adapting a tapered transmission line model. The detailed design, fabrication, and measurement are discussed.

High Power Buck-boost DC-DC Converter of Soft Switching for Photovoltaic Power Generation (태양광 발전을 위한 대용량 소프트 스위칭 승강압 DC-DC 컨버터)

  • 김영철;김재준;이종근;전중함;곽동걸;이현우
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.117-120
    • /
    • 1996
  • Power conversion system must be increased switching frequency in order to achieve a small size, a light weight and a low noise. However, the switches of converter are subjected to high switching power losses and switching stresses. As a result of those, the power system brings on a low efficiency. In this paper, the authors propose a DC-DC boost converter of high power by partial resonant switch method (PRSM). The switching devices in a proposed circuit are operated with soft switching and the control technique of those is simplified for switch to drive in constant duty cycle. The partial resonant circuit makes use of a inductor using step up and a condenser of loss-less snubber. Also the circuit has a merit which is taken to increase of efficiency, as it makes to a regeneration at input source of accumulated energy in snubber condenser without loss of snubber in conventional circuit. The result is that the switching loss is very low and the efficiency of system is high. The proposed converter is deemed the most suitable for high power applications where the power switching devices are used.

  • PDF