• Title/Summary/Keyword: High Polymer

Search Result 3,754, Processing Time 0.036 seconds

Thermal Stability and Mechanical Interfacial Properties of DGEBA/PMR-15 Blend System Initiated by Cationic Latent Thermal Catalyst (잠재성 양이온 개시제를 이용한 DGEBA/PMR-15 블렌드계의 열안정성 및 기계적 계면 특성에 관한 연구)

  • Park, Soo-Jin;Lee, Hwa-Young;Han, Mijeong;Hong, Sung-Kwon
    • Journal of Adhesion and Interface
    • /
    • v.5 no.1
    • /
    • pp.3-11
    • /
    • 2004
  • In this work, the cure behaviors of the DGEBA/PMR-15 blends initiated by N-benzylpyrazinium hexafluoroantimonate (BPH) as a cationic latent catalyst were performed in DSC and DMA analyses. And, the thermal stabilities were carried out by TGA analysis and their mechanical interfacial properties of blends were measured in the context of critical stress intensity factor ($K_{IC}$). As a result, the curing activation energy ($E_a$) determined from Ozawa's equation in DSC and the relaxation activation energy ($E_r$) from DMA were increased with increasing PMA-15 content. Also, the thermal stabilities obtained from the integral procedural decomposition temperature (IPDT) and the glass transition temperature ($T_g$) were highly improved with increasing the PMR-15 content, which were probably due to the high heat resistance. And, the $K_{IC}$ showed a similar behavior with $E_a$, which was attributed to the improving of the interfacial adhesion or hydrogen bondings between intermolecular chains.

  • PDF

Solid-liquid Separation Characteristics of Membrane Filter Press according to Coagulant Properties of Anaerobic Digestion Waste Water (혐기소화폐액의 응집제 특성에 따른 멤브레인 필터프레스의 고액분리 특성)

  • Han, Seong Kuk;Jung, Hee Suk;Song, Hyoung Woon;Kim, Ho;Ahn, Dae Hyun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.3
    • /
    • pp.23-32
    • /
    • 2014
  • Recently, it is increase in the processing of organic waste using anaerobic digestion. Therefore, the studies on the processing method for increasing the anaerobic digestion waste water. But it is very difficult to solid-liquid separation, because the characteristics of anaerobic digestion waste water. So this study evaluate solid-liquid separation efficiency of anaerobic digestion sludge using CST(Capillary Suction Time), TTF(Time to Filter). To address this problem, a membrane filter press of the lab scale was produced and the anaerobic digestion wastewater was applied to it. Polymer coagulants were found to be most suitable 7192PLUS and 1T60, It is necessary to minimum injection concentration is 7192PLUS (200 mg/L), 1T60 (100 mg/L). To evaluate dehydration efficiency, it was measured the moisture content of the dehydrated cake and suspended solids of decanted water. As a result, showed that a high removal efficiency of 97.4% when the solid-liquid separation using the membrane filter press. And the moisture content of the dehydrated cake was less than 65%.

Production of $\beta$-Mannanase and $\beta$-Mannosidase from Sporolactobacillus sp. M201. (Sporolactobacillus sp. M201 균주에 의한 $\beta$-Mannanase와 $\beta$-Mannosidase의 생산)

  • 박원식;김화영;최용진
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.3
    • /
    • pp.232-237
    • /
    • 1998
  • A bacterial strain producing high levels of an extracellular ${eta}$-mannanase and intracellular ${eta}$-mannosidase and ${alpha}$-galactosidase was isolated from soil. The strain isolated was identified as a strain of Sporolactobacillus sp. and designated as Sporolactobacillus sp. M20l. Synthesis of ${eta}$-mannanase by Sporolactobacillus sp. M20l was induced by sucrose, maltose, or locust bean gum. The highest induction rate was obtained with 2% locust bean gum added to the culture medium as a sole carbon source. On the other hand, induction of ${eta}$-mannosidase was observed only with locust bean gum. The optimal media for the enzyme production were established as follows: for ${eta}$-mannanase; 2% locust bean gum, 0.5% peptone, 0.2% KH$_2$PO$_4$, 80 mg/l MgSO$_4$, and 8 mg/l ZnSO$_4$ (pH 6.0), and for ${eta}$-mannosidase; 2% locust bean gum, 0.5% yeast extract, 0.2% KH$_2$PO$_4$, 80 mg/l MgSO$_4$, and 8 mg/l ZnSO$_4$ (pH 5.0). The optimal culture temperatures for production of ${eta}$-mannanase and ${eta}$-mannosidase were found to be 37$^{\circ}C$ and 3$0^{\circ}C$, respectively. Under the optimal culture conditions, the production of ${eta}$-mannanase and ${eta}$-mannosidase reached the highest levels of 10.6 units/ml and 1.35 units/ml after 30 h and 24 h cultivation, respectively.

  • PDF

Studies on the Physical and Thermal Properties of the Chitosan/Gelatin Blend (키토산/젤라틴 블랜드 폴리머의 물리적 및 열적 특성에 대한 연구)

  • Kim, Byung-Ho;Park, Jang-Woo
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.30-37
    • /
    • 2005
  • To mass-produce useful biopolymer films, chitosan/gelatin blend films were prepared by solution casting method. Effects of mixing ratio, tensile strength (TS), elongation (E) at break, total color difference (${\Dalta}E$), opacity, water vapor permeability (WVP), oxygen permeability (OP), and thermal properties on chitosan/gelatin blend films properties were investigated. TS, E, ${\Dalta}E$, opacity, WVP, and OP values were 58.24-22.01 MPa, 13.11-24.67%, 1.86-17.45, 0.3104-1.2161 nmO.D./${\mu}m$, $1.6875-1.7225ng{\cdot}m/m^{2}{\cdot}s{\cdot}Pa$, and $2.2380{\times}10^{-7}-2.2975{\times}10^{-7}\;mL{\cdot}{\mu}m/m^{2}{\cdot}s{\cdot}Pa$, respectively. TS of blend films decreased, while E, ${\Dalta}E$, and opacity increased with increasing chitosan content. WVP of blend films did not show any significant relationship with mixing ratio and thickness of blend films. Miscibility of films was examined over entire composition range by thermogravimetric analyzer (TGA) and dynamic mechanical analyzer (DMA). TGA results showed gelatin is more thermally stable than chitosan and some interactions among functional groups of two biopolymers. Glass transition temperature $(T_{2})$ of films as determined by DMA decreased with increasing content of chitosan in the blend. Results of thermal analysis indicate high miscibility among polymer components in the blend.

Flexural Behavior of FRP Bar Reinforced HSC Beams with Different Types of Reinforcing Bar and Fiber (이질 보강근 및 섬유와 함께 보강된 FRP 보강근 보강 고강도 콘크리트 보의 휨 거동)

  • Yang, Jun-Mo;Shin, Hyun-Oh;Min, Kyung-Hwan;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.273-280
    • /
    • 2011
  • Ten high-strength concrete beam specimens, which have various combinations of different types of flexural reinforcement and short fibers were constructed and tested. Six beams were reinforced with two layers of steel, CFRP, and GFRP bar combinations. The other four beams were reinforced with two layers of single type CFRP and GFRP bars, with steel and synthetic short fibers. An investigation was performed on the influence of the parameters on the load-carrying capacity, post cracking stiffness, cracking pattern, deflection behavior, and ductility. The low post cracking stiffness, large deflection, deep crack propagation, large crack width, and low ductility of FRP bar-reinforced beams were controlled and improved by positioning steel bars in the inner layer of the FRP bar layer. In addition, the addition of fibers increased the first-cracking load, ultimate flexural strength, and ductility as well as the deep propagating cracks were controlled in the FRP bar-reinforced concrete beams. The increased ultimate concrete strain of fiber-reinforced concrete should be determined and considered when FRP bar-reinforced concrete members with fibers are designed.

Manufacture and Evaluation of Small Size PEMFC Stack Using Carbon Composite Bipolar Plate (탄소복합소재 분리판을 이용한 소형 고분자전해질 연료전지 스택 제작 및 성능분석)

  • Han, C.;Choi, M.;Lee, J.J.;Lee, J.Y.;Kim, I.T.;An, J.C.;Shim, J.;Lee, H.K.
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.81-88
    • /
    • 2010
  • Small size polymer electrolyte membrane fuel cell (PEMFC) stacks were prepared using carbon composite and graphite bipolar plates and their performances were evaluated on reactant gas and operating time. In comparison to single cell and stack, it was identified that home-made bipolar plate was well-designed to maximize stack performance as high as that of single cell. During long-term operation, the performances of stacks using two different kinds of bipolar plates were compared. The decrease of performance in both stacks was accelerated with increasing load current. It was observed from stack test that the stack performance using carbon composite bipolar plate was very similar to that using graphite bipolar plate.

THE EFFECTS OF DENTURE CLEANSERS AND DISINFECTANTS ON THE COLOR, SURFACE HARDNESS, SURFACE ROUGHNESS OF DENTURE BASE RESINS (의치세정제와 소독제가 의치상 레진의 색조, 표면경도, 표면조도에 미치는 영향에 대한 연구)

  • Yang Hee-Jin;Jang Bok-Sook;Chung Dong-June;Heo Seong-Joo;Han Dong-Hoo;Shim June-Sung;Chang Myung-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.1
    • /
    • pp.105-113
    • /
    • 2001
  • The purpose of this study is to compare effects of denture cleansers and disinfectants on the color. surface hardness, and surface roughness of reinforced acrylic resin using polyhedral oligosilsesquioxane molecules(POSS resin) to those of common resins. According to manufacturer's instructions, 45 specimens were made from three denture resins(Luciton 199, Paladent 20, POSS resin), and polished. Five denture cleansers(distilled water, glutaraldehyde, alkaline hypochlorites, chlorhexidine, alkaline peroxides) in combination with three denture resins were evaluated before and after immersion for 7 days. Color data in $L^*a^*b^*$ system were measured with a colorimeter. Surface hardness data were measured with a microhardness tester. Surface roughness data were measured with a 3-dimensional surface analyzer. Data were analyzed with two-way ANOVA, one-way ANOVA, and t-test. The results were as follows : 1. All resins(Luciton 199, Paladent 20, POSS resin) showed significant differences in color after immersion in hypochlorites(p<0.05). 2. POSS resin showed significant differences in color compared with Paladent 20 in all denture cleansers, but no statistically significant differences with Luciton 199(p<0.05). 3. Luciton 199 showed significant differences of surface hardness in chlorhexidine, Paladent 20 showed significant differences in glutaraldehyde and chlorhexidine. POSS resin showed a little change of surface in all denture cleanser, but no statistically significant differences(p<0.05). 4. Luciton 199 and Paladent 20 showed significant differences of surface roughness in hypochlorites and glutaraldehyde, and POSS resin showed no statistically significant differences in all denture cleansers(p<0.05).

  • PDF

Creep Behavior of Pultruded Ribbed GFRP Rebar and GFRP Reinforced Concrete Member (인발성형된 이형 GFRP 보강근과 GFRP 보강 콘크리트 부재의 크리프 거동)

  • You, Young-Jun;Park, Young-Hwan;Kim, Hyung-Yeol;Choi, Jin-Won;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.187-194
    • /
    • 2013
  • Fiber reinforced polymer (FRP) has been gathering interest from designers and engineers for its possible usage as a replacement reinforcement of a steel reinforcing bar due to its advantageous characteristics such as high tensile strength, non-corrosive material, etc. Since it is manufactured with various contents ratios, fiber types, and shapes without any general specification, test results for concrete members reinforced with these FRP reinforcing bars could not be systematically used. Moreover, since investigations for FRP reinforced members have mainly focused on short-term behavior, the purpose of this study is to evaluate long-term behaviors of glass FRP (GFRP) reinforcing bar and concrete beams reinforced with GFRP. In this paper, test results of tensile and bond performance of GFRP reinforcing bar and creep behavior are presented. In the creep tests, results showed that 100 years of service time can be secured when sustained load level is below 55% of tensile strength of GFRP reinforcing bar. A modification factor of 0.73 used to calculate long-term deflection of GFRP reinforced beams was acquired from the creep tests for GFRP reinforced concrete beams. It is expected that these test results would give more useful information for design of FRP reinforced members.

Electrochemical Properties of Activated Carbon Supecapacitor Containing Poly(acrylonitrile) Nonwoven Separator Coated by a Hydrogel Polymer Electrolyte (Poly(acrylonitrile) 부직포 분리막에 코팅된 하이드로겔 고분자 전해질을 포함하는 활성탄 수퍼커패시터 특성)

  • Latifatu, Mohammed;Ko, Jang Myoun;Lee, Young-Gi;Kim, Kwang Man;Jo, Jeongdai;Jang, Yunseok;Yoo, Jung Joon;Kim, Jong Huy
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.550-555
    • /
    • 2013
  • A hydrogel electrolyte consisting of potassium poly(acrylate) (PAAK) (3 wt%) in 6 M KOH aqueous solution is coated on poly(acrylonitrile) nonwoven separator to examine high-rate characteristics of activated carbon supercapacitor adopting the separator. The hydrogel is homogeneously coated on the surface pores of the nonwoven separator. The electrolyte uptake of the PAAK hydrogel maintains for 24 days higher than 230% and the coated separator shows slightly lower ionic conductivity ($2.9{\times}10^{-2}Scm^{-1}$) than that ($3.6{\times}10^{-2}Scm^{-1}$) of using 6 M KOH only. The activated carbon supercapacitor adopting the coated separator shows a specific capacitance higher than $27Fg^{-1}$ at $1000mVs^{-1}$ and a retention ratio higher than 97% after the 1000th cycle. This is due to strong interfacial contact of coated hydrogel electrolyte between the activated carbon electrode and the nonwoven separator.

Preparation of Dextran Microparticles by Using the SAS Process (초임계 반용매 재결정 공정을 이용한 Dextran 입자의 제조)

  • Kang, Dong-Yuk;Min, Byoung-Jun;Rho, Seon-Gyun;Kang, Choon-Hyoung
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.958-964
    • /
    • 2008
  • In this work, micro-sized dextran particles, which have recently been focused as one of the candidate materials for the Drug Delivery System(DDS), were prepared by means of the Supercritical Antisolvent (SAS) process with $CO_2$. With dimethyl sulfoxide(DMSO) as the solvent, effects of the operating variables such as temperature (308.15~323.15 K), pressure(90~130 bar), solute concentration(10~20 mg/ml), and the molecular weight of the solute(Mw=37,500, 450,000) on the size and morphology of the resulting particles were thoroughly observed. The higher solute concentration led to the larger particles, however, the injection velocity of the solution and pressure did not show significant effects on the resulting particle size. With dextran of the lower molecular weight, the smallest particles were obtained at 313.15 K. On the other hand, the size of the particles from the high molecular weight dextran ranged between $0.1{\sim}0.5{\mu}m$ with an incremental effect of the temperature and pressure. For the solute concentration of 5 mg/ml, the lower molecular weight dextran did not form discrete particles while aggregation of the particles appeared when the solute concentration exceeded 15 mg/ml for the higher molecular weight dextran. It is believed that if the solute concentration is too low, the degree of the supersaturation in the recrystallization chamber would not be sufficient for initiation of the nucleation and growth mechanism. Instead, the spinodal decomposition mechanism leads to formation of the island-like phase separation which appears similar to aggregation of the discrete particles. This effect would be more pronounced for the smaller molecular weight polymer system due to the narrower phase-splitting region.