• 제목/요약/키워드: High Polymer

검색결과 3,754건 처리시간 0.037초

리튬 폴리머 전지 $LiFePO_4$의 전기화학적 특성 (Electrochamical Properties of $LiFePO_4$ Electrodes for Lithium Polymer Battery)

  • 공명철;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 춘계학술대회 논문집
    • /
    • pp.5-9
    • /
    • 2005
  • $LiFePO_4$ is a potential candidate for the cathode material of the lithium polymer batteries. $LiFePO_4$ cathode active materials were synthesized by coating on the $LiFePO_4$ was tried using $TiO_2$ and corbon in oreder to increase cyclic performance and electronic conductivity. Highly dispersed on the particles enhances the electronic conductivity and increases the capacity. For lithium polymer battery applications, $LiFePO_4$/SPE/Li and $LiFePO_4$-$TiO_2$/SPE/Li 'cells were characterized electrochemically by cyclic volatammetry and charge/discharge cycling. The $LiFePO_4$-carbon-$TiO_2$ cathode in PVDF-PC-EC-$LiCIO_4$ electrolyte showed high capacity at high current density.

  • PDF

Anisotropy in Gum and Black Filled SBR and NR Vulcanizates Due to Large Deformation

  • Park, Byung-Ho;G.R. Hamed
    • Macromolecular Research
    • /
    • 제8권6호
    • /
    • pp.268-275
    • /
    • 2000
  • After imposing a large pre-strain, anisotropy increases with increasing residual extension ratio. Gums have very low residual extension ratio and exhibit little anisotropy, while black filled SBR and especially sulfur-cured carbon black filled NR have large set and anisotropy. For carbon black filled rubber, samples subjected to tensile loading in perpendicular to the pre-strain direction have the same stress-strain curves shape as the sample without pre-strain (=isotropic samples), but slightly lower modulus. However, compared to isotropic or perpendicular directional samples to pre-strain direction, samples subjected to tensile loading in parallel to the pre-strain direction show low stress at low deformation, but have high stiffness at high deformation. Normalized anisotropy changes with strain. The normalized anisotropy for various deformations is a linear function of residual extension ratio.

  • PDF

Performance of a Ceramic Fiber Reinforced Polymer Membrane as Electrolyte in Direct Methanol Fuel Cell

  • Nair, Balagopal N.;Yoshikawa, Daishi;Taguchi, Hisatomi
    • 멤브레인
    • /
    • 제14권1호
    • /
    • pp.53-56
    • /
    • 2004
  • Direct Methanol Fuel Cell (DMFC) is considered as a candidate technology for applications in stationary, transportation as well as electronic power generation purposes. To develop a high performance direct methanol fuel cell(DMFC), a competent electrolyte membrane is needed. The electrolyte membrane should be durable and methanol crossover must be low. One of the approaches to increase the stability of generally used polymer electrolyte membranes such as Nafion against swelling or thermal degradation is to bond it with an inorganic material physically or chemically. In Noritake Company, we have developed a novel method of reinforcing the polymer electrolyte matrix with inorganic fibers. Methanol crossover values measured were significantly lower than the original polymer electrolyte membranes. These fiber reinforced electrolyte membranes (FREM) were used for DMFC study and stable power output values as high 160 mW/$\textrm{cm}^2$ were measured. The details of the characteristics of the membranes as well as I-V data of fuel cell stacks are detailed in the paper.

Energy dissipation of steel-polymer composite beam-column connector

  • Wang, Yun-Che;Ko, Chih-Chin
    • Steel and Composite Structures
    • /
    • 제18권5호
    • /
    • pp.1161-1176
    • /
    • 2015
  • The connection between a column and a beam is of particular importance to ensure the safety of civil engineering structures, such as high-rise buildings and bridges. While the connector must bear sufficient force for load transmission, increase of its ductility, toughness and damping may greatly enhance the overall safety of the structures. In this work, a composite beam-column connector is proposed and analyzed with the finite element method, including effects of elasticity, linear viscoelasticity, plasticity, as well as geometric nonlinearity. The composite connector consists of three parts: (1) soft steel; (2) polymer; and (3) conventional steel to be connected to beam and column. It is found that even in the linear range, the energy dissipation capacity of the composite connector is largely enhanced by the polymer material. Since the soft steel exhibits low yield stress and high ductility, hence under large deformation the soft steel has the plastic deformation to give rise to unique energy dissipation. With suitable geometric design, the connector may be tuned to exhibit different strengths and energy dissipation capabilities for real-world applications.

Fabrication of Electrically Switchable Bragg Gratings of The Transmission Mode From Holographic Polymer Dispersed Liquid Crystals

  • Kim, Kyung-Jin;Kim, Byung-Kyu;Kang, Young-Soo;Jang, Ju-Seog
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제11C권3호
    • /
    • pp.63-69
    • /
    • 2001
  • Holographic transmission gratings were performed by an Ar-laser( ${\lambda}$=514nm) intensity, the ratio fo LC contents to the surfactant. The addition of the surfactant to the LC and pre-polymer systems causes the droplet to maintain the ideal size at the high fraction(over 40wt%) of the LC contents that induce the films to be fabricated with high diffraction efficiency than that of no surfactant series. The image of these films was examined using a charge coupled device (CCD). We also studied the angular selectivity plots which support the important role in the multiplexer channel (MUX). Eventually, we showed the reconstructive optical image recorded in this transmission mode of HPDLCs.

  • PDF

폴리머 LP애자의 설계해석과 전기적 성능 시험 (The Design Analysis and Electrical Performance Test of Polymer LP Insulator)

  • 이운용;조한구;박상호;송홍준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.399-401
    • /
    • 2000
  • Recently polymer insulators are being used for outdoor high voltage applications. Polymer insulators for transmission and distribution line have significant advantages over porcelain and glass insulators, especially for ultra-high voltage(UHV) transmission lines. Their advantages are light weight, vandalism resistance and hydrophobicity. In this paper, polymer line post insulator has been designed and investigated electric field distribution by FEM. Designed LP insulators have been tested as insulator performance test, such as power frequency voltage test, lightning impulse voltage test, artificial pollution test and flexural load test.

  • PDF

공정안전용 Polymer PTC 소재의 제조 및 특성 (Preparation and Properties of Polymer PTC Composites for Process Safety)

  • 강영구;조명호
    • 한국안전학회지
    • /
    • 제18권3호
    • /
    • pp.101-108
    • /
    • 2003
  • Polymeric positive temperature coefficient(PTC) composites have been prepared by incorporating carbon black(CB) into high density polyethylene(HDPE), polyphenylene sulfide(PPS) and polybutylene terephthalate(PBT) matrices. A PTC effect was observed in the composite, caused by the large thermal expansion due to He consecutive melting of HDPE, PPS and PBT crystallites. This theory is based upon the premise that the PTC phenomenon is due to a critical separation distance between carbon particles in the polymer matrix at the higher temperature. The influence of PTC characteristics of the PPS/CB composite can be explained by DSC result. HDPE, one of prepared composition, exhibit the higher performance PTC behavior that decreaseing of negative temperature coefficient(NTC) effect and improved reproducibility by chemically crosslinking. Also, PBT/CB and PPS/CB composites exhibit the higher PTC peack temperature than HDPE/CB PTC composite, individually $200^{\circ}C$ and $230^{\circ}C$. These PTC composite put to good use in a number of safety application, such as self$.$controlled heater, over-current protectors, auto resettable switch, high temperature proctection sensor, etc.

Thermally Crosslinked Polyimide Binders for Si-alloy Anodes in Li-ion Batteries

  • Chang, Hyeong-Seok;Ji, Sang-Gu;Rho, Miso;Lee, Byoung-Min;Kim, Sung-Soo;Choi, Jae-Hak
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권3호
    • /
    • pp.339-346
    • /
    • 2022
  • Silicon (Si) has attracted considerable attention due to its high theoretical capacity compared to conventional graphite anode materials. However, Si-based anode materials suffer from rapid capacity loss due to mechanical failure caused by large volume change during cycling. To alleviate this phenomenon, crosslinked polymeric binders with strong interactions are highly desirable to ensure the electrode integrity. In this study, thermally crosslinked polyimide binders were used for Si-alloy anodes in Li-ion batteries. The crosslinked polyimide binder was found to have high adhesion strength, resulting in enhanced electrode integrity during cycling. Therefore, the Si-alloy anodes with crosslinked polyimide binder provide enhanced electrochemical performance, such as Coulombic efficiency, capacity retention, and cycle stability.

Mechanical Properties and Failure Mechanism of the Polymer Composite with 3-Dimensionally Stitched Woven Fabric

  • Lee, Geon-Woong;Park, Joong-Sik;Lee, Sang-Soo;Park, Min;Kim, Junkyung;Choe, Chul-Rim;Soonho Lim
    • Macromolecular Research
    • /
    • 제11권2호
    • /
    • pp.98-103
    • /
    • 2003
  • The mechanical properties and failure mechanisms of through-the-thickness stitched plain weave glass fabric/polyurethane foam/epoxy composites were studied. Hybrid composites were fabricated using resin infusion process (RIP). Stitched sandwich composite increased drastically the flexural properties as compared with the unstitched fabrics. The breaking of stitching yarns was observed during the flexural test and this failure mode yielded relatively high flexural properties. Composites with stitched sandwich structure improved the mechanical properties with increasing the number of stitching yarns. From this study, it was concluded that proper combination of stitching density and types of stitching fiber is important factor for through-the-thickness stitched composite panels.

Electrical Interconnection with a Smart ACA Composed of Fluxing Polymer and Solder Powder

  • Eom, Yong-Sung;Jang, Keon-Soo;Moon, Jong-Tae;Nam, Jae-Do
    • ETRI Journal
    • /
    • 제32권3호
    • /
    • pp.414-421
    • /
    • 2010
  • The interconnection mechanisms of a smart anisotropic conductive adhesive (ACA) during processing have been characterized. For an understanding of chemorheological mechanisms between the fluxing polymer and solder powder, a thermal analysis as well as solder wetting and coalescence experiments were conducted. The compatibility between the viscosity of the fluxing polymer and melting temperature of solder was characterized to optimize the processing cycle. A fluxing agent was also used to remove the oxide layer performed on the surface of the solder. Based on these chemorheological phenomena of the fluxing polymer and solder, an optimum polymer system and its processing cycle were designed for high performance and reliability in an electrical interconnection system. In the present research, a bonding mechanism of the smart ACA with a polymer spacer ball to control the gap between both substrates is newly proposed and investigated. The solder powder was used as a conductive material instead of polymer-based spherical conductive particles in a conventional anisotropic conductive film.