• Title/Summary/Keyword: High Polymer

Search Result 3,754, Processing Time 0.034 seconds

Solid State Dye-Sensitized Solar Cells Employing Polymer Electrolytes : Oligomer Approach

  • Kang, Yong-Soo;Lee, Yong-Gun;Kang, Moon-Sung;Kim, Jong-Hak;Char, Kook-Choen
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.63-64
    • /
    • 2006
  • The solid state dye-sensitized solar cells (DSSCs) employing polymer electrolytes show high overall energy conversion efficiency as high as 4.5 % at 1 sun conditions. The improved efficiency may be primarily due to the enlarged interfacial contact area between the electrolyte and dyes in addition to the increased ionic conductivity, which were done by utilizing liquid oligomers, followed by in situ self-solidification, to form the solid DSSCs: "Oligomer Approach". The effect of the charge transfer resistance at the counter electrode side on the efficiency has also been investigated.

  • PDF

Migration of Nanoclay in Immiscible Polymer Blends

  • Kim, Yong-Kyoung;Ahn, Kyung-Hyun;Lee, Seung-Jong;Hong, Joung-Sook
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.366-366
    • /
    • 2006
  • Five sandwiched multilayers consisting of PBT(Polybutyleneterephthalate), PS(Polystyrene) and clay were prepared to investigate the migration mechanism of clay in the polymer blend system. Rheometry (RMS800) was used to apply well-defined shear on the above multilayer samples in order to well understand dominant factors controlling the migration. Applied shear force was enough to move clay tactoids to the interface, if either long time or high shear was available, but it was not sufficient to separate into individual platelets of clay. The morphology evolution was subsequently studied in term of scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HR-TEM), respectively.

  • PDF

Novel Recycling Technology of Ultra-fine Fibrous Materials

  • Kim, Seong-Hun;Oh, Kyung-Wha;Lee, Shin-Kyung
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.209-209
    • /
    • 2006
  • Ultra-fine fibers are spun by expensive fiber spinning technology using special spinnerets. Ultra-fine fibrous materials have attracted considerable attentions because of their potential applications as high performance wiping cloths, water absorbent sound proofing materials and moisture transfer sporting good. However, production expense of ultra-fine fibers is 5 to 7 times higher than general textile materials. The objective of this research is to develop cost-effective recycling process to produce multi-functional ultra-fine fibrous material in terms of the development of garnetting and carding machines for ultra-fine fibrous material waste and scrap. The efficiency of sound absorption for the recycled polyester nonwoven increased with decreasing length and thickness of component fibers, which was attributed to the reduction of air permeability. It is expected that high value and cost-effective textile products are developed using ultra-fine fibrous wastes and that sound proofing material and oil absorbent f

  • PDF

A Study on Synthetic Failure-finding Method for Electrical and Thermal Degradation of Polymer Insulator by Surface Discharge

  • Lee, Kang-Won;Jang, Dong-Uk;Park, Cheol-Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.3
    • /
    • pp.143-146
    • /
    • 2007
  • Polymer insulators are used widely in variable fields for high voltage insulation and separating people from high voltage charging parts for safety and also supporting overhead power line in electric railway. But it may be broken down by tracking path resulting from continuous surface discharge. This paper has investigated synthetically both the characteristics of electrical aging using precision CT(current transformer) and the thermal aging using thermography method. Electrical aging was analyzed for time-frequency region and thermal aging was illustrated by image processing method. This synthetic method may be an appropriate one to evaluate the surface degradation of polymer insulator.

High Strength Electrospun Nanofiber Mats via CNT Reinforcement: A Review

  • Pant, Bishweshwar;Park, Mira;Park, Soo-Jin;Kim, Hak Yong
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.186-193
    • /
    • 2016
  • The development of electrospun nanofibers with improved mechanical properties is of great scientific and technological interest because of their wide-range of applications. Reinforcement of carbon nanotubes (CNTs) into the polymer matrix is considered as a promising strategy for substantially enhancing the mechanical properties of resulting CNTs/polymer composite mats on account of extraordinary mechanical properties of CNTs such as ultra-high Young's modulus and tensile strengths. This paper summarizes the recent developments on electrospun CNTs/polymer composite mats with an emphasis on their mechanical properties.

Strain hardening behavior of linear polymer melts

  • Hong Joung Sook;Ahn Kyung Hyun;Lee Seung Jong
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.4
    • /
    • pp.213-218
    • /
    • 2004
  • Linear high-density polyethylene (PE) was controlled to induce strain-hardening behavior by introducing a small amount of second component with an anisotropic structure. In order to form an anisotropic structure in the PE matrix, the polymer was extruded through a twin-screw extruder, and the structure was controlled by varying the extrusion conditions. Depending on conditions, the second component formed a film, thread and droplet structure. If the second component was kept rigid, the morphology evolution could be delayed and the second component could maintain its film or thread structure without further relaxation. In par­ticular, the second component of the thread structure made a physical network and gave rise to remarkable strain hardening behavior under high extension. This study suggests a new method that induces strain hard­ening behavior by introducing a physically networked second component into the linear polymer melt. This result is anticipated to improve the processibility of linear polymers especially when extensional flow is dominant, and to contribute to our understanding of strain hardening behavior.

Recent Advances in Polybenzimidazole (PBI)-based Polymer Electrolyte Membranes for High Temperature Fuel Cell Applications

  • Vijayakumar, Vijayalekshmi;Kim, Kihyun;Nam, Sang Yong
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.643-651
    • /
    • 2019
  • Polybenzimidazole (PBI), an engineering polymer with well-known excellent thermal, chemical and mechanical stabilities has been recognized as an alternative to high temperature polymer electrolyte membranes (HT-PEMs). This review focuses on recent advances made on the development of PBI-based HT-PEMs for fuel cell applications. PBI-based membranes discussed were prepared by various strategies such as structural modification, cross-linking, blending and organic-inorganic composites. In addition, intriguing properties of the PBI-based membranes as well as their fuel cell performances were highligted.

Fire Resistance of Inorganic Polymer Composites for Repair and Rehabilitation (보수.보강에 사용하는 무기계 폴리머 복합재료의 내열성능)

  • Balaguru, P.N.;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.647-652
    • /
    • 1997
  • Repair and rehabilitation of existing structures is becoming a major part of construction, both in the industrially developed and developing countries. Advanced high strength composites are being utilized more and more for these applications because they are much stronger than steel, non-corrosive, and light. The light weight reduces the construction cost and time sustantially. The fibers are normally made of aramid, carbon, or glass and the binders are typically epoxies or esters. One major disadvantage of these composites is the vulnerability to fire. In most instance, the temperature cannot exceed $300^{\cire}C$. Since carbon and glass can substain high temperatures, an inorganic polymer is being evaluated for use as a matrix. The matrix can sustain more than $1000^{\cire}C$. The results reported in this paper deal with the mechanical properties of carbon composites made with the inorganic polymer and the behavior strengthened reinforced concrete beams. The results indicate that the new matrix can be successfully utilized for a number of applications.

  • PDF

Structures and Physical Properties of in situ composite based on Liquid Crystalline Polymer and Poly(ethylene 2,6-naphthalate) Blends

  • Yoo, Hyun-Oh;Kim, Seong-Hun;Hong, Soon-Man;Hwang, Seung-Sang
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.236-239
    • /
    • 1998
  • The in situ composites based on poly(ethylene 2,6-naphthalate) and thermotropic liquid crystalline polymer (LCP) have been an area of increasing interest and study, since LCP exhibits high chemical stabilities and excellent thermo mechanical properties such as high strength and modulus. In a binary, however, poor compatibility and interfacial adhesions between two phases frequently results in deteriorated mechanical properties. (omitted)

  • PDF

Liquid Crystal Aligning Capabilities on a New Photo-Crosslinkable Polyimide Based Polymer (새로운 광중합 가능한 폴리이미드계 몰리머을 이용한 액정 배향 특성)

  • 황정연;서대식;이상렬;김재형;한은주
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.5
    • /
    • pp.430-434
    • /
    • 2001
  • We synthesized a new photo-crosslinkable polymer (polyimide (PI)-chalcone-biphenyl (BP)) and liquid crystal (LC) aligning capabilities for nematic (N) LC with obliquely polarized UV exposure on a photo-crosslinkable polymer were studied. The high pretilt angle in NLC was obtained by polarized UV exposure on a PI-Chal-BP surface for 3 min. The high pretilt angle generated in NLC is attributed to the biphenyl moieties and the photo-dimerized chalclone group of a photopolymer. Also, good thermal stability of a PI-Chal-BP were obtained by thermogravimetric analysis (TGA) measurement until 450$^{\circ}C$. Finally, good voltage-transmittance curves and response time were observed by UV exposure on a PI-Chal-BP surface for 3min.

  • PDF