• Title/Summary/Keyword: High Performance Superplasticizer

Search Result 67, Processing Time 0.022 seconds

A Study on the Investigation of Performance about Quick Measurement Technology of Unit Water Content at Mixing Factor of High Strength Concrete (고강도 콘크리트의 단위수량 신속 측정기법별 배합요인에 따른 성능 검토에 관한 연구)

  • Yoon, Seob;Jung, Young-Min;Jeong, Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.745-748
    • /
    • 2008
  • On investigation about quick measurement technology of unit water at range of W/B=35% in high strength, the average error of the Di-electric constant moisture tester A has measured more than $23.0kg/m^3$ unit water content of design and the average error of the method of unit volume weigh was less than $-9.6kg/m^3$. The average error with mixing factor has influenced with a kind of sand, but had not influenced with unit water content of design. Therefore, it will be for introduce business decide require more than a study about cement, sand, superplasticizer, etc.

  • PDF

Effect of Silica Fume Types on the Mechanical Properties of Ultra-High Performance Concrete (실리카퓸 종류가 초고성능 콘크리트의 공학적 특성에 미치는 영향)

  • Park, Chun-Jin;Koh, Kyung-Teak;Ahn, Gi-Hong;Han, Min-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.220-227
    • /
    • 2015
  • Ultra high performance concrete (UHPC) uses large quantities of steel fiber, silica fume, filler and superplasticizer for a low water-to-binder ratio (W/B). Despite of exceptional mechanical performances, UHPC exhibits increased viscosity due to the adoption of silica fume and its fabrication cost is costlier than ordinary concrete because of the use of large quantities of expensive materials. Following, this study evaluates the mechanical properties of 180MPa-UHPC using zirconium silica fume (Zr) instead of silica fume with respect to the quantity and type of superplasticizer (SP) and the size of filler. The results reveal that the Zr-UHPC using W/B of 20%, 100% of Zr, amount of SP-L of 2 to 3% and $4{\mu}m$-filler with steel fiber in 1.5 vol.% can develop better fluidity than the traditional mix composition using silica fume and secure a compressive strength higher than 180 MPa. In addition, the proposed mix composition is shown to enable a reduction of the fabrication cost by 33% compared to traditional UHPC.

A Sugeestion of Rheological Performance Range for Manufacturing Mid-workability Concrete (중유동 콘크리트 제조를 위한 레올로지 성능 범위 제안)

  • Lee, Yu-Jeong;Lee, Young-Jun;Han, Dong-Yeop
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.4
    • /
    • pp.305-318
    • /
    • 2021
  • The aim of the research is providing the rheological performance range for manufacturing "mid-workability concrete". The mid-workability concrete means the normal strength range concrete mixture with high workability. Since there is not enough study or quantitative definitions on performance of the mid-workability concrete, in this research, the performance range for high workability of mid-workability concrete mixture using rheology. Because of the mixture characteristics of generally used normal strength concrete such as relatively high water-to-cement ratio and no SCMs, segregation of coarse aggregate should be prevent to achieve a successful high workability. From the experimental study in this research scope, 5 to 35 Pa.s of plastic viscosity was desirable to prevent segregation for nid-workability concrete, and general performance range with rheological parameters was provided.

Property of tow Shrinkage High Performance Concrete depending on Mixture Proportions and Material Characteristics (배합 및 재료요인에 따른 저수축 고성능 콘크리트의 품질 특성)

  • Han Cheon-Goo;Kim Sung-Wook;Koh Kyoung-Taek;Han Mu-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.805-811
    • /
    • 2004
  • In this paper, effects of mixture proportion and material condition on both fundamental properties, drying and autogenous shrinkage of high performance concrete are discussed. According to the results, for the effect of mixture proportion on the fundamental properties, decrease in W/B and unit water content results in reduction of fluidity, while air content has no variation. Compressive strength exhibits an decreasing tendency with an increase in W/B and unit water content do not remarkable affect the compressive strength. For the effect of materials on the fluidity, the fluidity of low heat portland cement(LPC) is smaller than that of ordinary portland cement(OPC). The use of Polycarbonic acid based superplasticizer(PS) has more favorable effect on enhancing fluidity than Naphtalene based superplasticlzer(NS) and Melamine based superplasticizer(MS). Air content of concrete using LPC is larger than that using OPC. The effects of superplasticizer type on the air content is larger in order of MS, PS and NS. The use of LPC exhibited lower strength development at early age than OPC, whereas after 91days, similar level of compressive strength is achieved regardless of cement type. Compressive strength of concrete is not affected by SP type. For the effect of mixture proportion and materials on drying and autogenous shrinkage, an increase in W/B results in reduction of drying shrinkage and an decrease in water content leads to reduce drying shrinkage. Autogenous shrinkage is not observed until 49 days with the concrete mixture with $35\%$ of W/B and $145 kg/m^3$ of water content. This is due to the combination effects of expansion admixture and shrinkage reducing admixture, which causes an offset of autogenous shrinkage. The use of LPC results in a reduction in autogenous shrinkage compared with OPC. SP type has little influence on the autogenous shrinkage. It is found from the results that mixture proportioning of high performance concrete incorporating fly ash, silica fume, expansion admixture and shrinkage reducing admixture is need to focus on the increase in W/B and the reduction in water content and the use of LPC and MS is also required to use to secure the stability against shrinkage properties.

Prediction of workability of concrete using design of experiments for mixtures

  • Yeh, I-Cheng
    • Computers and Concrete
    • /
    • v.5 no.1
    • /
    • pp.1-20
    • /
    • 2008
  • In this study, the effects and the interactions of water content, SP-binder ratio, and water-binder ratio on the workability performance of concrete were investigated. The experiments were designed based on flatted simplex-centroid experiment design modified from standard simplex-centroid one. The data gotten from the design was used to build the concrete slump model using neural networks. Research reported in this paper shows that a small number of slump experiments can be performed and meaningful data obtained with the experiment design. Such data would be suitable for building slump model using neural networks. The trained network can be satisfactorily used for exploring the effects of the components and their interactions on the workability of concrete. It has found that a high water content and a high SP/b ratio is essential for high workability, but achieving this by increasing these parameters will not in itself guarantee high workability. The w/b played a very important role in producing workability and had rather profound effects; however, the medium value about 0.4 is the best w/b to reach high slump without too much effort on trying to find the appropriate water content and SP/b.

A Study on the Freeze-Thaw Resistance of Water-permeable Concretes (투수성 콘크리트의 동결융해 저항성에 관한 연구)

  • 은재기;김완기;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.433-438
    • /
    • 2000
  • The purpose of this study is to examine the resistance of water-permeable concretes to freezing and thawing action. The water-permeable concretes with cement-aggregate ratio of 1:5.5(by weight) and two kinds of admixture content [SP : superplasticizer(0, 1.0%), HPAE : high performance air entraining agent(0.5, 1%)] used OPC(ordinary portland cement) as binder were prepared, and then tested for relative dynamic modulus of elasiticity, mass change, length change and durablity factor. It's been concluded from the test results that the superior relative dynamic modulus of elasiticity and durability factor of water-permeable concretes were obtained at superplaciticizer 1.0% after 300 cycles. The water-permeable concretes used superplasiticizer 1.0% having relative durability factor of 88% after 300 cycles.

  • PDF

Synthesis of High-Performance Polycarboxylate(PC)-Type Superplasticizer, and Its Fluidity and Hydration Behavior in Cement Based-System (폴리카복실레이트계 고성능 유동화제의 합성과 시멘트계 내의 유동 및 수화 반응 거동)

  • Shin, Jin-Yong;Chae, Eun-Jin;Hong, Ji-Sook;Suh, Jeong-Kwon;Hwang, Eui-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.77-80
    • /
    • 2006
  • Graft copolymerized polycarboxylate(PC)-type superplasticizers(PCs) which have carboxylic acid with $\pi$ bond among the molecular structure and polyethyleneglycol methyl ether methacrylate(PMEM) were synthesized by free radical reaction and investigated the chemical structure, polymerization condition, and physical and chemical properties. Also, the effects of PCs in the dispersion, adsorption and hydration of cement were evaluated. As the molecular weight of graft chain decreases, the adsorption amount on cement particles increased. It was advantageous for the flow to reduce molar ratio, the lower the side bone molecular weight, and increase the molar ratio, the larger the side bone molecular weight. The hydration reaction speed was highly delayed at day 1, due to increase in molar ratio and reduction in side bone molecular weight, but it was recovered in the days after.

  • PDF

A Study on the material properties of Self-compacting concrete using Korean and Japanese Belite rich cement (한국 및 일본의 Belite rich Cement를 사용한 자기충전형 콘크리트의 재료적 특성에 관한 연구)

  • Kim, Jong-Woo;Ha, Jae-Dam;Kim, Ki-Soo;Shin, Kyu-Yeun;Choi, Woong;Kenichiro, Seto
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.177-182
    • /
    • 1998
  • In this study, We compare material properties of Self-compacting concrete using Korean Belite cement with Japanese. Self-compacting concrete consolidates densely by virtue of its own weight at the location where concrete compaction cannot be carried out. Material properties of Korean and Japanese Belite cement are very similar but compatibility with superplasticizer and viscosity agent are some different. Before the batch mix, the compatibility must be checked as fresh concrete properties. For the concrete test results, Korean Beilite cement is suitable to product High performance concrete.

  • PDF

Effect of Polycarboxylate Type Superplasticizer on the Rheological Properties of Mortar (고성능AE감수제를 이용한 모르타르의 유동특성 평가에 관한 연구)

  • Jung, Youn-Sik;Lim, Chae-Yong;Yang, Seung-Kyu;Um, Tae-Sun;Lee, Jong-Ryul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.801-804
    • /
    • 2006
  • Polycarboxylate type superplasticizers(PC) have got widely used for making not only high performance concrete but low grade concrete as well. It is known that fluidity of cement with PC is affected by the characteristics of cement especially sulphate ion concentration and hydration activity. But the characteristics of PC also affect the fluidity. The fluidity of cement mortar with various types of PC was measured and critical dosage(CD) and dispersing ability(DA) was calculated. CD and DA is strongly dependent on the type of PC. And the variation of fluidity on time was affected by the type of PC also. So, it is advisable to investigate the property of PC before production of concrete and adjust it to meet the requirements of concrete depending on the materials, the time of transport and so on.

  • PDF

Evaluating Early Age Shrinkage Behavior of Ultra High Performance Cementitious Composites (UHPCC) with CSA Expansive Admixture and Shrinkage Reducing Agent (CSA계 팽창재 및 수축 저감제의 혼입에 따른 UHPCC의 초기 수축 거동 평가)

  • Yoo, Doo-Yeol;Park, Jung-Jun;Kim, Sung-Wook;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.441-448
    • /
    • 2011
  • In this study, experimental tests of chemical and autogenous shrinkage were performed to evaluate the early age shrinkage behaviors of ultra high performance cementitious composites (UHPCC) with various replacement ratios of silica fume (SF), shrinkage reducing agent (SRA), expansive admixture (EA), and superplasticizer (SP). Starting time of self-desiccation, was analyzed by comparing the setting times and the deviated point of chemical and autogenous shrinkage strains. The test results indicated that both SF and SRA augment the early age chemical shrinkage, whereas SP delays the hydration reaction between cement particles and water, and reduces chemical shrinkage. About 49% of autogenous shrinkage was depleted by synergetic effect of SRA and EA. The hardening of UHPCC was catalyzed by containing EA. Self-desiccation of UHPCC occurred prior to the initial setting due to the high volume fraction of fibers and low water-binder ratio (W/B).