• Title/Summary/Keyword: High Performance Superplasticizer

Search Result 67, Processing Time 0.03 seconds

An Experimental Study on the Influence of the Qualities of Ordinary Portland Cement on the Flowability of High Flow Concrete (보통 포틀랜드 시멘트 품질이 고유동 콘크리트의 유동 특성에 미치는 영향에 관한 연구)

  • Choi, Sung-Woo;Jo, Hyun-Tae;Ryu, Deug-Hyun;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.37-44
    • /
    • 2012
  • Recently, due to developments in construction technology, the use of high-performance concrete became popular. High-performance concrete when compared to the ordinary concrete can better satisfy required performances by using mineral admixture and superplasticizer. Various studies on the effect of admixture materials on the quality of high-performance concrete have been reported. But there exist limited number of reported results on the effect of cement qualities, which is the most important constituent material in concrete. Therefore, in this study, the relationship between the quality of cement and the flowability of high flowing concrete is investigated. Qualities of domestically produced cement were identified, and then the influence of the qualities of cement on the flowability of high flowing concrete is evaluated. The result showed that the dosage of required superplasticizer was dependent on cement fineness, to brain, free-CaO, and interstitial phase, which all trigger initial hydration process of cement. Particularly, the results showed that fineness of cement has a high impact on the dosage of the superplasticizer. For strength property of concrete, the dosage of superplasticizer had a significant effect on the early age strength, but had negligible effect in the long term strength.

Fluidity Performance Evaluation of Low Viscosity Typed Superplasticizer for Cement-Based Materials Incorporating Supplementary Cementitious Materials (혼화재료를 치환한 시멘트 계열 재료에 대한 저점도형 고성능 감수제의 유동 성능 평가)

  • Son, Bae-Geun;Lee, Hyang-Seon;Lee, You-Jeong;Han, Dong-Yeop
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.3
    • /
    • pp.219-228
    • /
    • 2019
  • The aim of the research is to provide a fundamental data of low viscosity typed superplasticizer (SP) on cement-based materials incorporating various supplementary cementitious materials (SCMs). As a relatively new product, low-viscosity typed SP has introduced for high performance concrete with high viscosity due to its high solid volume fraction with various SCMs. However, there are not enough research or reports on the performance of the low viscosity typed SP with cement-based materials incorporting SCMs. hence, in this research, for cement paste and mortar, fluidity and rheological properties were evaluated when the mixtures contained various SCMs such as fly ash, blast furnace slag, and silica fume. From the experiment conducted, it was checked that the low viscosity typed superplasticizer decreased the plastic viscosity of the mixture as well as the yield stress. From the results of this research, it is expected to contribute on introduction of new type SP for high performance concrete or high-viscous cementitious materials.

The Effects of the Coplymerization Conditions in Synthesis of Polycarboxylic Type Superplasticizer on Interfacial Properties and on Cement Mortar Fluidity (Polycarboxylate계 콘크리트 유동화제의 합성에 있어서 공중합 조건에 따른 계면물성 변화 및 이의 시멘트 몰탈의 물성에 미치는 영향)

  • Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.463-468
    • /
    • 2010
  • The polycarboxylic (PC) type concrete superplasticizer was synthesized. The effects of ethylene oxide group number and its molecular weight on the properties of the polycarboxylic type concrete superplasticizer and the concrete motar properties were studied. To investigated of the interfacial properties of the premixed-concrete with the superplasticizer, the type and the amount of polyethylene glycol, meta acrylate added, and type of the initialization agent were studied. Also the interfacial properties of the superplasticizer aqueous phase, the wettability on the cement particle, the fluidity of the cement mortar, and the strength properties of the concrete were measured. For a high fluidity of the cement mortar and a high strength of concrete, a low value of the surface tension and contact angle were required for PC. To have a good performance for PC, the reaction condition of 1.3 mol ratio of MA against to MPEG was suitable with KSP initiator.

Performance of High Strength Self-Compacting Concrete Beams under Different Modes of Failure

  • Harkouss, Raya Hassan;Hamad, Bilal Salim
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.1
    • /
    • pp.69-88
    • /
    • 2015
  • Self-consolidating concrete (SCC) is a stable and cohesive high consistency concrete mix with enhanced filling ability properties that reduce the need for mechanical compaction. Limited standards and specifications have been reported in the literature on the structural behavior of reinforced self-compacting concrete elements. The significance of the research presented in this paper stems from the need to investigate the effect of enhanced fluidity of SCC on the structural behavior of high strength self-consolidating reinforced concrete beams. To meet the objectives of this research, twelve reinforced concrete beams were prepared with two different generations of superplasticizers and designed to exhibit flexure, shear, or bond splitting failure. The compared beams were identical except for the type of superplasticizer being used (second generation sulphonated-based superplasticizer or third generation polycarboxylate-based superplasticizer). The outcomes of the experimental work revealed comparable resistance of beam specimens made with self-compacting (SCC) and conventional vibrated concrete (VC). The dissimilarities in the experimental values between the SCC and the control VC beams were not major, leading to the conclusion that the high flowability of SCC has little effect on the flexural, shear and bond strengths of concrete members.

An Effect of the Mixing Factor Influencing to the Properties of Super-Workable Concrete (초유동 콘크리트의 특성에 미치는 배합요인의 영향)

  • 우상륙;김기철;윤기원;이정희;한천구;반호용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.25-28
    • /
    • 1993
  • This study is designed for analyzing the properties of super-workable concrete with the parmeter of water contens, S/A , superplasticizer kinds, superplasticizer dosage and cement replacement method of pozzolanic admixture. And this study is aimed for presenting the reference data in practical use of super-workable and high-performance concrete.

  • PDF

Execution of High Fluidity Concrete by Flowing Method (유동화 공법을 적용하여 제조한 고유동 콘크리트의 시공)

  • 한민철;손성운;한천구
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2001.11a
    • /
    • pp.28-33
    • /
    • 2001
  • This paper presents the results of mock up test on the manufacturing of high fluidity concrete by applying flowing methods with segregation reducing type superplasticizer(SRS). Three kinds of mock up structure are made such as. conventional concrete(A), high fluidity concrete(B) and high fluidity concrete incorporating 20% of fly ash(C). Physical and mechanical properties, temperature history of structure and nondestructive test are performed. Segregation reducing type superplasticizer is put into base concrete at field, and base concrete is also flowed at field. C mock up structure which requires 0.85% of SRS to flow base concrete shows most desirable performance at fresh state. The highest rising temperature shows the lowest at C structure among the tested structures. Strength variations before and after flowing also show the lowest values at C structures.

  • PDF

Cost effective optimal mix proportioning of high strength self compacting concrete using response surface methodology

  • Khan, Asaduzzaman;Do, Jeongyun;Kim, Dookie
    • Computers and Concrete
    • /
    • v.17 no.5
    • /
    • pp.629-638
    • /
    • 2016
  • Optimization of the concrete mixture design is a process of search for a mixture for which the sum of the cost of the ingredients is the lowest, yet satisfying the required performance of concrete. In this study, a statistical model was carried out to model a cost effective optimal mix proportioning of high strength self-compacting concrete (HSSCC) using the Response Surface Methodology (RSM). The effect of five key mixture parameters such as water-binder ratio, cement content, fine aggregate percentage, fly ash content and superplasticizer content on the properties and performance of HSSCC like compressive strength, passing ability, segregation resistance and manufacturing cost were investigated. To demonstrate the responses of model in quadratic manner Central Composite Design (CCD) was chosen. The statistical model showed the adjusted correlation coefficient R2adj values were 92.55%, 93.49%, 92.33%, and 100% for each performance which establish the adequacy of the model. The optimum combination was determined to be $439.4kg/m^3$ cement content, 35.5% W/B ratio, 50.0% fine aggregate, $49.85kg/m^3$ fly ash, and $7.76kg/m^3$ superplasticizer within the interest region using desirability function. Finally, it is concluded that multiobjective optimization method based on desirability function of the proposed response model offers an efficient approach regarding the HSSCC mixture optimization.

The Development of Normal Strength-High Fluidity Concrete to Improve Compaction of Concrete Wall and Flatness of Slab (충전성 및 평탄도 개선을 위한 일반강도 중유동 콘크리트 개발)

  • Kim, Yong-Ro;Park, Jong-Pil;Kim, Rae-Hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.55-56
    • /
    • 2022
  • Recently, water leak is increasing due to poor compaction or segregation of concrete on external wall. In addition, the flatness quality of the slab is lowered due to the deterioration of the workability of concrete. In this study, the performance of high fluidity concrete of 21MPa using a polycarboxylate-based superplasticizer was evaluated to improve the compaction and quality of the concrete wall.

  • PDF

The Effect of the Amount of Polycarboxylate Superplasticizer on the Properties of Ultra-High Performance Fiber-Reinforced Concrete (폴리칼본산계 고성능감수제 사용량이 초고성능 섬유보강 콘크리트의 성질에 미치는 영향)

  • Kang, Su-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.11-18
    • /
    • 2018
  • As the amount of polycarboxylate superplasticizer varied from 1.2% to 3.0% of the mass of binder, the change in the flowability & rheological properties, and strength of UHPFRC was investigated with experiments. The test results presented that the increase in the amount of superplasticizer was effective in improving the flowability up to 1.8%, but addition more than 1.8% was hardly beneficial for enhancing the flowability and rhelogical properties. Compressive strengths with different amounts of superplasticizer showed that the strength with 1.8% was slightly higher than that of 1.2%, but the amount more than 1.8% caused strength reduction, which was higher as the amount increased. The results in flexural strength according to the amount of superplasticizer showed a similar trend with the results in compressive strength. When the effect of compressive strength and fiber distribution characteristics on the flexural strength was analysed separately, it was found that high amount of superplasticizer caused an effect of fiber distribution in addition to the effect of compressive strength on flexural strength. This effect seems to be closely related to the results of flowability or rheological properties.

Modeling of temperature history in the hardening of ultra-high-performance concrete

  • Wang, Xiao-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.273-284
    • /
    • 2014
  • Ultra-high-performance concrete (UHPC) consists of cement, silica fume (SF), sand, fibers, water and superplasticizer. Typical water/binder ratios are 0.15 to 0.20 with 20 to 30% silica fume. In the production of ultra-high performance concrete, a significant temperature rise at an early age can be observed because of the higher cement content per unit mass of concrete. In this paper, by considering the production of calcium hydroxide in cement hydration and its consumption in the pozzolanic reaction, a numerical model is proposed to simulate the hydration of ultra-high performance concrete. The heat evolution rate of UHPC is determined from the contributions of cement hydration and the pozzolanic reaction. Furthermore, by combining a blended-cement hydration model with the finite-element method, the temperature history in the hardening of UHPC is evaluated using the degree of hydration of the cement and the silica fume. The predicted temperature-history curves were compared with experimental data, and a good correlation was found.