• Title/Summary/Keyword: High Ozone Concentration

Search Result 296, Processing Time 0.026 seconds

A Study on the Solubilisation of Excess Sludge using Microbubble Ozone (잉여슬러지 가용화를 위한 마이크로버블 오존 이용에 관한 연구)

  • Lee, Shun-Hwa;Jung, Kye-Ju;Kwon, Jin-Ha;Lee, Se-Han
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.4
    • /
    • pp.325-332
    • /
    • 2010
  • This study was conducted with the experiment of solubilisation of excess sludge by microbubble ozone process. To improve ozone contact efficiency, microbubble ozones which its diameter were the avearge 30 ${\mu}m$, microbubble size less than 40 ${\mu}m$ occupied about over 90% of all. In treating sludge using microbubble ozones, in case microbubble ozones are injected at microbubble ozone dosage of 0.34 g $O_3/g$ SS or less regardless of sludge concentration, microbubble ozone consumption rate was found to be 100% with no emission of waste ozones. In treating sludges by each concentration, in case the initial SS concentration of sludge is set to 6,447 mg/L, 5,557 mg/L, 3,180 mg/L, 1,092 mg/L and 515 mg/L, the amount of removed SS tended to increase with increase in initial SS concentration for the same microbubble ozone dosage, and treatment of sludge with high initial SS concentration was effective in raising the oxidation efficiency of microbubble ozones. On the other hand, as a result of reviewing acid, alkali and microbubble ozone treatment as composite treatment of sludge, use of acid treatment for the pre-treatment of microbubble ozone was more effective than alkali treatment, and in case of treatment at microbubble ozone dosage 0.05g $O_3/g$ SS with the concentration of sulfuric acid infused in the sludge, the amount of removed SS, 153.9 g, was 1.9 times more than 81.2 g the amount of single treatment of microbubble ozone.

Fabrication of Ozone Bubble Cleaning System and its Application to Clean Silicon Wafers of a Solar Cell

  • Yoon, J.K.;Lee, Sang Heon
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.295-298
    • /
    • 2015
  • Ozone micro-bubble cleaning system was designed, and made to develop a unique technique to clean wafers by using ozone micro-bubbles. The ozone micro-bubble cleaning system consisted of loading, cleaning, rinsing, drying and un-loading zones, respectively. In case of the cleaning the silicon wafers of a solar cell, more than 99 % of cleaning efficiency was obtained by dipping the wafers at 10 ppm of ozone for 10 minutes. Both of long cleaning time and high ozone concentration in the wet-solution with ozone micro-bubbles reduced cleaning efficiency because of the re-sorption of debris. The cleaning technique by ozone micro-bubbles can be also applied to various wafers for an ingot and LED as an eco-friendly method.

A Study on Ozone Oxidation of Algae (조류의 오존산화에 관한 연구)

  • 김은호;성낙창;최용락
    • Journal of Life Science
    • /
    • v.9 no.5
    • /
    • pp.590-595
    • /
    • 1999
  • The objectives of this research were to estimate variation characteristics of TOC, UV-254 and NH4+-N, etc, if odorous generated algaes flowed into water treatment plant and they contacted with ozone known as typical advanced treatment. It was estimated that pH decreased from initial 7.4 to 2.1 after ozone contact 100min. pH declined to early 10min. suddenly and then pH drop did almost occur. TOC and UV-254 continued to decrease with passed time of ozone contact. NO3--N concentration was much higher than NH4+-N and NO2--N for whole test period. Because ozone oxidized organic matters as various kinds of ion material and ion intensity of sample was extended, conductivity showed high as passed time of ozone contact. Owing to ozone oxidation of algae, color did almost disappear after ozone contact 20min.

  • PDF

불포화 토양내에서 가스상 오존 이동특성에 대한 Multiphase liquids의 영향

  • 정해룡;최희철
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.124-127
    • /
    • 2003
  • Laboratory scale experiments on in-situ ozonation were carried out to delineate the effects of liquid phases, such as soil water and nonaqeous phase liquid (NAPL) on the transport of gaseous ozone in unsaturated soil. Soil water enhanced the transport of ozone due to water film effect, which prevent direct reaction between soil particles and gaseous ozone, and increased water content reduced the breakthrough time of ozone because of increased average linear velocity of ozone and decreased air-water interface area. Diesel fuel as NAPL also played a similar role with water film, so the breakthrough time of ozone in diesel-contaminated soil was significantly reduced compared with uncontaminated soil. However, ozone breakthrough time was retarded with increased diesel concentration, because of high reactivity of diesel fuel with ozone. In multiphase liquid system of unsaturated soil, the ozone transport was mainly Influenced by nonwetting fluid, diesel fuel in this study.

  • PDF

A study on dissolved ozone in water (수중 오존의 분해에 관한 연구)

  • Kim, Young-Bae;Cho, Hook-Hee;Seo, Kil-Soo;Lee, Hyeong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2041-2043
    • /
    • 2000
  • Ozone is widely used to sterilize food and tap water because ozone is a strong oxidizer. To date, it has been difficult to dissolve a high concentration of ozone gas in water because the large size of the bubbles limits the contact area between the ozone gas and liquid water. The measurements of dissolved ozone can be used to control water quality and ozone dosage. Therefore the dissolved ozone measurement of most interest is that of residual ozone at the discharge point of a particular treatment chamber.

  • PDF

Study on the Ozone Generation and Decomposition of Trichloroethylene Using Dielectric Ball Materials filled Barrier Discharge (유전체 볼 충진 배리어 방전을 이용한 오존 생성 및 TCE 분해처리에 관한 연구)

  • Han, Sang-Bo
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.431-437
    • /
    • 2019
  • This work was carried out ozone generation and TCE decomposition characteristics using dielectric ball materials filled barrier discharge reactor and catalyst's reactor for ozone decomposition. Ozone concentration generated from $Al_2O_3$ or $TiO_2$ filled barrier discharge reactor was so high compared with non-filled discharge reactor. This reactor is good discharge structure for generating the high ozone concentration. In addition, TCE decomposition rate and COx conversion rate increased using $MnO_2$ filled discharge reactor, because ozone was decomposed at the same discharge space on the surface of $MnO_2$ catalysts. To identify the $MnO_2$ catalytic effects, TCE decomposition rate reached to 100[%] by the decomposition of ozone at $MnO_2$ catalyst's reactor by the arrangement of $Al_2O_3$ filled discharge reactor and $MnO_2$ catalyst reactor. Finally, $MnO_2$ catalyst is good materials for the decomposition of ozone and this process will be useful for decomposing VOCs such as TCE.

Inactivation of Vibrio parahaemolyticus by Aqueous Ozone

  • Feng, Lifang;Zhang, Kuo;Gao, Mengsha;Shi, Chunwei;Ge, Caiyun;Qu, Daofeng;Zhu, Junli;Shi, Yugang;Han, Jianzhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1233-1246
    • /
    • 2018
  • Vibrio parahaemolyticus contamination causes serious foodborne illness and has become a global health problem. As a disinfectant, aqueous ozone can effectively kill a number of bacteria, viruses, parasites, and other microorganisms. In this study, three factors, namely, the aqueous ozone concentration, the exposure time, and the bacterial density, were analyzed by response surface methodology, and the aqueous ozone concentration was the most influential factor in the sterilization ratio. Under low aqueous ozone concentrations (less than 0.125 mg/l), the bacterial cell membranes remained intact, and the ozone was detoxified by intracellular antioxidant enzymes (e.g., superoxide dismutase and catalase). Under high aqueous ozone concentrations (more than 1 mg/l), cell membranes were damaged by the degree of peripheral electronegativity at the cell surface and the concentration of lactate dehydrogenase released into the extracellular space, and the ultrastructures of the cells were confirmed by transmission electron microscopy. Aqueous ozone penetrated the cells through leaking membranes, inactivated the enzymes, inhibited almost all the genes, and degraded the genetic materials of gDNA and total RNA, which eventually led to cell death.

Characteristics of Summer Tropospheric Ozone over East Asia in a Chemistry-climate Model Simulation

  • Park, Hyo-Jin;Moon, Byung-Kwon;Wie, Jieun
    • Journal of the Korean earth science society
    • /
    • v.38 no.5
    • /
    • pp.345-356
    • /
    • 2017
  • It is important to understand the variability of tropospheric ozone since it is both a major pollutant affecting human health and a greenhouse gas influencing global climate. We analyze the characteristics of East Asia tropospheric ozone simulated in a chemistry-climate model. We use a global chemical transport model, driven by the prescribed meteorological fields from an air-sea coupled climate model simulation. Compared with observed data, the ozone simulation shows differences in distribution and concentration levels; in the vicinity of the Korean Peninsula, a large error occurred in summer. Our analysis reveals that this bias is mainly due to the difference in atmospheric circulation, as the anomalous southerly winds lead to the decrease in tropospheric ozone in this region. In addition, observational data have shown that the western North Pacific subtropical high (WNPSH) reduces tropospheric ozone across the southern China/Korean Peninsula/Japan region. In the model, the ozone changes associated with WNPSH are shifted westward relative to the observations. Our findings suggest that the variations in WNPSH should be considered in predicting tropospheric ozone concentrations.

A Study on the Optimal Use of Silent Discharge Type Ozonizer in Purification Plant (정수장의 무성방전형 오존발생기 최적활용방안에 관한 연구)

  • Shin, Hong-Sub;Park, Hyun-Mi;Kwon, Young-Hak;Song, Hyun-Gig;Park, Won-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.3
    • /
    • pp.54-60
    • /
    • 2015
  • There are 5 purification plants with the adopted advanced water purification treatment process in Korea. Annual operating costs were 8,990 million won including purchase cost of oxygen and power usage charges. We need research to optimize, in the future, when considering the direction of domestic water treatment continues to adopt advanced water treatment process. In this paper, calculate the optimal operating costs by injected the oxygen gas, used power cost. approximately 25% of the operating costs can be reduced when injected the ozone gas is 1.0ppm than 2.0ppm, the necessary amount of oxygen is increased then power is lower. so operating costs are decided according to oxygen costs. On the other hand, high ozone concentration 2.0ppm, the necessary power is increased then amount of oxygen is lower. Therefore, in the case of G purification plant, the controlling factor of the input ozone concentration 2ppm, PID control operation by setting the concentration of over 10Wt% is efficient. The installed capacity is the more little the more better when considering on Ozone injection rate in the process of water treatment.

A Study on the Bleaching Properties of Silk Fabric Using Vapor Type Ozone Treatment (기상 오존처리법을 이용한 견직물의 표백성에 관한 연구)

  • Kim, Jung-Min;Lee, Mun-Soo
    • Fashion & Textile Research Journal
    • /
    • v.6 no.4
    • /
    • pp.511-514
    • /
    • 2004
  • We studied on the bleaching properties of silk fabric by vapor type ozone processing using ozone's strong oxidation instead of 28% $H_2O_2$ chemical treatment. When vapor type ozone processing was directly treated to fabrics retaining water to 50~70% pick up ratio, high concentration ozone was generated 14,000ppm(168 mg/h) approximately and finally its bleaching improved. The fabric's bleaching effect was improved because vapor type ozone generated the highest decomposition to oxidation of surface and inter molecules. The experiment revealed that fabric's bleaching was improved by change of the pick-up ratio of vapor type ozone processing. However, tensile strength and elongation were reduced by increase of time, and the time that was assumed as the most optimized time to minimize the reduction of fabric's tensile strength and elongation as well as maximizing the fabric's bleaching was 30 minutes.