• Title/Summary/Keyword: High Order Scheme

Search Result 1,113, Processing Time 0.024 seconds

An FPGA Implementation of High-Speed Adaptive Turbo Decoder

  • Kim, Min-Huyk;Jung, Ji-Won;Bae, Jong-Tae;Choi, Seok-Soon;Lee, In-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4C
    • /
    • pp.379-388
    • /
    • 2007
  • In this paper, we propose an adaptive turbo decoding algorithm for high order modulation scheme combined with originally design for a standard rate-1/2 turbo decoder for B/QPSK modulation. A transformation applied to the incoming I-channel and Q-channel symbols allows the use of an off-the-shelf B/QPSK turbo decoder without any modifications. Adaptive turbo decoder process the received symbols recursively to improve the performance. As the number of iterations increase, the execution time and power consumption also increase as well. The source of the latency and power consumption reduction is from the combination of the radix-4, dual-path processing, parallel decoding, and early-stop algorithms. We implemented the proposed scheme on a field-programmable gate array (FPGA) and compared its decoding speed with that of a conventional decoder. From the result of implementation, we confirm that the decoding speed of proposed adaptive decoding is faster than conventional scheme by 6.4 times.

Torque Ripple Reduction Scheme of Single-Phase SRM with High Power Factor (고역률형 단상 SRM의 토크리플 저감방식)

  • Lee, Zhen-Guo;Liang, Jianing;An, Young-Ju;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.122-125
    • /
    • 2005
  • A novel torque ripple reduction scheme of single-phase SRM with high power factor is presented. The proposed SRM drive has one additional active switches in the conventional asymmetric inverter. In order to get a higher power factor, the source current is controlled sinusoidal, And additional excitation current is added from charge capacitor due to torque ripple reduction. The switching period of source and charged voltage is controlled properly to get unity power factor and torque ripple reduction. The characteristics and validity of the proposed scheme is discussed with some simulation results.

  • PDF

Bandwidth Management of WiMAX Systems and Performance Modeling

  • Li, Yue;He, Jian-Hua;Xing, Weixi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.2
    • /
    • pp.63-81
    • /
    • 2008
  • WiMAX has been introduced as a competitive alternative for metropolitan broadband wireless access technologies. It is connection oriented and it can provide very high data rates, large service coverage, and flexible quality of services (QoS). Due to the large number of connections and flexible QoS supported by WiMAX, the uplink access in WiMAX networks is very challenging since the medium access control (MAC) protocol must efficiently manage the bandwidth and related channel allocations. In this paper, we propose and investigate a cost-effective WiMAX bandwidth management scheme, named the WiMAX partial sharing scheme (WPSS), in order to provide good QoS while achieving better bandwidth utilization and network throughput. The proposed bandwidth management scheme is compared with a simple but inefficient scheme, named the WiMAX complete sharing scheme (WCPS). A maximum entropy (ME) based analytical model (MEAM) is proposed for the performance evaluation of the two bandwidth management schemes. The reason for using MEAM for the performance evaluation is that MEAM can efficiently model a large-scale system in which the number of stations or connections is generally very high, while the traditional simulation and analytical (e.g., Markov models) approaches cannot perform well due to the high computation complexity. We model the bandwidth management scheme as a queuing network model (QNM) that consists of interacting multiclass queues for different service classes. Closed form expressions for the state and blocking probability distributions are derived for those schemes. Simulation results verify the MEAM numerical results and show that WPSS can significantly improve the network’s performance compared to WCPS.

Aerodynamic Simulation of Korea next generation high speed train using open source CFD code (오픈 소스 CFD 코드를 이용한 차세대 고속열차 공력 해석)

  • Kim, B.Y.;Gill, J.H.;Kwon, H.B.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.327-330
    • /
    • 2011
  • CFD simulation is widely used in various industries, universities and research centers. In Korea most of the researchers use foreign commercial S/W packages especially in industries. But commercial CFD packages have some problems as limit to source code and very high license foe. So from several years ago open source CFD code has been widely spread as an alternative. But in Korea there are a few users of open source code. Insufficiency of performance validation as for accuracy, robustness, convenience and parallel speed-up is important obstacles of open source code. So we tested some validation cases as to incompressible external aerodynamics and internal flaws and now are doing compressible flaws. As the first stage of compressible flow validation, we simulated Korea next generation high speed train(HEMU). It's running condition is 400km/hr and maximum Mach number reaches up to 0.4. With the high speed train we tested accuracy, robustness and parallel performance of open source CFD code OpenFOAM Because there isn't experimental data we compared results with widely used commercial code. When use $1^{st}$ order upwind scheme aerodynamic forces are very similar to commercial code. But using $2^{nd}$ order upwind scheme there was some discrepancy. The reason of the difference is not clear yet. Mesh manipulation, domain decomposition, post-processing and robustness are satisfactory. Paralle lperformance is similar to commercial code.

  • PDF

Delta-form-based method of solving high order spatial discretization schemes for neutron transport

  • Zhou, Xiafeng;Zhong, Changming;Li, Fu
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2084-2094
    • /
    • 2021
  • Delta-form-based methods for solving high order spatial discretization schemes are introduced into the reactor SN transport equation. Due to the nature of the delta-form, the final numerical accuracy only depends on the residuals on the right side of the discrete equations and have nothing to do with the parts on the left side. Therefore, various high order spatial discretization methods can be easily adopted for only the transport term on the right side of the discrete equations. Then the simplest step or other robust schemes can be adopted to discretize the increment on the left hand side to ensure the good iterative convergence. The delta-form framework makes the sweeping and iterative strategies of various high order spatial discretization methods be completely the same with those of the traditional SN codes, only by adding the residuals into the source terms. In this paper, the flux limiter method and weighted essentially non-oscillatory scheme are used for the verification purpose to only show the advantages of the introduction of delta-form-based solving methods and other high order spatial discretization methods can be also easily extended to solve the SN transport equations. Numerical solutions indicate the correctness and effectiveness of delta-form-based solving method.

Kernel Integration Scheme for 2D Linear Elastic Direct Boundary Element Method Using the Subparametric Element (저매개변수 요소를 사용한 2차원 선형탄성 직접 경계요소법의 Kernel 적분법)

  • Jo, Jun-Hyung;Park, Yeongmog;Woo, Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.413-420
    • /
    • 2012
  • In this study, the Kernel integration scheme for 2D linear elastic direct boundary element method has been discussed on the basis of subparametric element. Usually, the isoparametric based boundary element uses same polynomial order in the both basis function and mapping function. On the other hand, the order of mapping function is lower than the order of basis function to define displacement field when the subparametric concept is used. While the logarithmic numerical integration is generally used to calculate Kernel integration as well as Cauchy principal value approach, new formulation has been derived to improve the accuracy of numerical solution by algebraic modification. The subparametric based direct boundary element has been applied to 2D elliptical partial differential equation, especially for plane stress/strain problems, to demonstrate whether the proposed algebraic expression for integration of singular Kernel function is robust and accurate. The problems including cantilever beam and square plate with a cutout have been tested since those are typical examples of simple connected and multi connected region cases. It is noted that the number of DOFs has been drastically reduced to keep same degree of accuracy in comparison with the conventional isoparametric based BEM. It is expected that the subparametric based BEM associated with singular Kernel function integration scheme may be extended to not only subparametric high order boundary element but also subparametric high order dual boundary element.

High resolution 5" full color field emission displays with new aging technique

  • Kim, J.M.;Hong, J.P.;Park, N.S.;Ryu, Y.S.;Jung, J.E.;Hong S.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.23-23
    • /
    • 1998
  • High resolution field emission dispplay(FED) devices of 5 inch diagonal in size are fully developped for the applications of near-future flat ppanel dispplays. Under the unique gate-switching drive scheme electron trajectory pprofiles are simulated and tested by considering leakage effects of each ppixel. Uniquely-pprinted sppacer with high asppect ratio are fabricated on real ITO glass for high vacuum ppackaging. In addition new gas aging scheme of stabilizing field emitting array are extensively investigated during the sealing and exhausting pprocess in order to pprevent oxidation effects on the micro tipp. Finally fulll color images of 64 gray scale will be demonstrated.

  • PDF

Highly accurate family of time integration method

  • Rezaiee-Pajand, Mohammad;Esfehani, S.A.H.;Karimi-Rad, Mahdi
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.603-616
    • /
    • 2018
  • In this study, the acceleration vector in each time step is assumed to be a mth order time polynomial. By using the initial conditions, satisfying the equation of motion at both ends of the time step and minimizing the square of the residual vector, the m+3 unknown coefficients are determined. The order of accuracy for this approach is m+1, and it has a very low dispersion error. Moreover, the period error of the new technique is almost zero, and it is considerably smaller than the members of the Newmark method. The proposed scheme has an appropriate domain of stability, which is greater than that of the central difference and linear acceleration techniques. The numerical tests highlight the improved performance of the new algorithm over the fourth-order Runge-Kutta, central difference, linear and average acceleration methods.

Robust Near Time-optimal Controller Design for a Driving System Using Lyapunov Stability (Lyapunov 안정성을 이용한 구동장치의 강인 최단시간 제어기 설계)

  • Lee, Seong-Woo;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.650-658
    • /
    • 2012
  • This paper proposes a high performance position controller for a driving system using a time optimal controller which has been widely used to control driving systems to achieve desired reference position or velocity in a minimum response time. The main purpose of this research lies in an improvement of transient response performance rather than that of steady-state response in comparison with other control strategies. In order to refine the scheme of time optimal control, Lyapunov stability proofs are incorporated in a controller of standard second order system model. This scheme is applied to the control of a driving system. In view of the simulation and experiment results, the standard second order system model exhibits better minimum-time control performance and robustness than double integral system model does.

Adaptive Force Ripple Compensation and Precision Tracking Control of High Precision Linear Motor System (초정밀 선형 모터 시스템의 적응형 힘리플 보상과 정밀 트랙킹 제어)

  • Choi Young-Man;Gweon Dae-Gab;Lee Moon G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.51-60
    • /
    • 2005
  • This paper describes a robust control scheme for high-speed and long stroke scanning motion of high precision linear motor system consisting of linear motor, air bearing guide and position measurement system using heterodyne interferometer. Nowadays, semiconductor process and inspection of wafer or LCD need high speed and long travel length for their high throughput and extremely small velocity fluctuations or tracking errors. In order to satisfy these conditions, linear motor system are widely used because they have large thrust force and do not need motion conversion mechanisms such as ball screw, rack & pinion or capstan with which the system are burdened. However linear motors have a problem called force ripple. Force ripple deteriorates the tracking performances and makes periodic position errors. So, force ripple must be compensated. To maximize the tracking performance of linear motor system, we propose the control scheme which is composed of a robust control method, Time Delay Controller (TDC) and a feedforward control method, Zero Phase Error Tracking Control (ZPETC) for accurate tracking a given trajectory and an adaptive force ripple compensation (AFC) algorithm fur estimating and compensating force ripple. The adaptive ripple compensation is continuously refined on the basis of tracking error. Computer simulation results based on modeled parameters verify the effectiveness of the proposed control scheme for high-speed, long stroke and high precision scanning motion and show that the proposed control scheme can achieve a sup error tracking performance in comparison to conventional TDC control.