• Title/Summary/Keyword: High Numerical Aperture(NA)

Search Result 23, Processing Time 0.02 seconds

Evaluation of Static Error Signal for Super Slim Optical Pick-up (초소형 광 픽업의 정적 오차 신호 검출)

  • Kang, S.M.;Cho, E.H.;Sohn, J.S.;Kim, W.C.;Park, N.C.;Park, Y.P.
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.115-120
    • /
    • 2005
  • As a popularity of a portable digital device such as a cellular phone, a digital camera and a MP3 player is spreading, the demand of the mobile storage device increases rapidly. A bluray technology using 405nm laser diode and objective lens having high NA(Numerical Aperture), 0.85, satisfies a miniaturization and a high capacity which are the requirements of the portable device. To develop SFFOP(small form factor optical pickup), it is prerequisite to minimize the number of optical components and establish evaluation and assembly method of micro optical pickup system as well as mass production method of micro optical component. To minimize optical elements of optical pickup, there have been many researches to use P-HOE(Polarized Holographic Optical Element) due to its extremely small size and versatile function. However, P-HOE is handled and assembled very accurately in SFFOP. In this paper, static error signal detection method is developed for an alignment of P-HOE in SFFOP. Using developed static error signal detection method, P-HOE can be aligned very accurately with real time result of static error signals of pickup such as FES(focusing error signal) and TES(Tracking Error Signal). The developed static error signal detection method is verified by the evaluation of commercialized DVD Pickup. And finally. developed static error signal detection method is applied for the assembly of P-HOE in SFFOP system satisfies specification of BD(Blu-ray Disk).

  • PDF

Backward Testing Method of MTF measurement for optical engine of CRT of rear projection HDTV (후면투사식 CRT 고화질 텔레비전용 광학엔진의 변조전달함수 측정을 위한 후방검사 변조전달함수 측정법)

  • Song, Jong-Sup;Jo, Jae-Heung;Hong, Sung-Mok;Lee, Yun-Woo;Song, Jae-Bong;Lee, Hoe-Yun;Lee, In-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.1
    • /
    • pp.56-62
    • /
    • 2005
  • Because of the wide plane and the curved field of CRT rear projection high definition television, its MTF(modulation transfer function) can't be easily measured by the usual forward testing method. Then we propose a backward testing method for the MTF so that the object plane and the image analyzer of forward testing are located at positions opposite each other. We prefer to use the backward testing method because the forward testing method has poor accuracy caused by very small numerical aperture, low spatial resolutions, and long depth of focus. We found that the backward testing method was very easy to align and had high repeatability. We confirmed the confidence of results obtained by the backward testing method in comparison with designed results.

Aberration Retrieval Algorithm of Optical Pickups Using the Extended Nijboer-Zernike Approach (확장된 네이보어-제르니케 방법에 의한 광픽업의 파면수차 복원 알고리즘)

  • Jun, Jae-Chul;Chung, Ki-Soo;Lee, Gun-Kee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.1
    • /
    • pp.32-40
    • /
    • 2010
  • In this work, the method of acquiring the pupil function of optical system is proposed. The wavefront aberration and the intensity distribution of pupil can be analysed with the pupil function. This system can be adopted to the manufacturing line of optical pickup directly and also has good performance to analysing various property of optical instrument. It is one kind of inverse problem to get pupil functions by 3D beam data. The extended Nijboer-Zernike(ENZ) approach recently proposed by Netherlands research group is adopted to accompany to solve these inverse problem. The ENZ approach is one of a aberration retrieval method for which numerous approaches are available. But this approach is new in the sense that it use the highly efficient representation of pupil functions by means of their Zernike coefficients. These coefficients are estimated by using matching procedure in the focal region the theoretical 3D intensity distribution and measured 3D intensity distribution. The algorithm that can be applied more general circumstance such as high-numerical aperture instrument is developed by modifying original ENZ approach. By these scheme, MS windows based GUI program is developed and the good performance is verified with generated 3D beam data.