• Title/Summary/Keyword: High Molecular Component

Search Result 198, Processing Time 0.028 seconds

High aspect-ratio InGaN nanowire photocatalyst grown by molecular beam epitaxy (MBE 법에 의해 성장된 고종횡비 InGaN 나노와이어 광촉매)

  • An, Soyeon;Jeon, Dae-Woo;Hwang, Jonghee;Ra, Yong-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.4
    • /
    • pp.143-148
    • /
    • 2019
  • We have successfully fabricated high aspect-ratio GaN-based nanowires on Si substrates using molecular beam epitaxy (MBE) system for high-efficiency hydrogen generation of photoelectrochemical water splitting. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) demonstrated that p-GaN:Mg and p-InGaN nanowires were grown vertically on the substrate with high density. Furthermore, it was also confirmed that the emission wavelength of p-InGaN nanowire can be adjusted from 552 nm to 590 nm. Such high-aspect ratio p-InGaN nanowire structure will be a solid foundation for the realization of ultrahigh-efficiency photoelectrochemical water splitting through sunlight.

MOLECULAR CLOUD ASSOCIATED WITH AFGL 2591

  • Minh, Y.C.;Yang, Ji
    • Journal of The Korean Astronomical Society
    • /
    • v.41 no.5
    • /
    • pp.139-145
    • /
    • 2008
  • The molecular cloud, embedding AFGL 2591, has a "head-and-tail" structure with a total mass of ${\sim}\;1800\;M_{\odot}$, about half of the mass (${\sim}\;900\;M_{\odot}$) in the head (size ${\sim}\;1.2\;pc$ in diameter), and another half in the envelope (${\sim}\;3.5\;pc$ in the east-west direction). We found a new cloud in the direction toward north-east from AFGL 2591 (projected distance ${\sim}\;2.4\;pc$), which is probably associated with the AFGL 2591 cloud. The $^{12}CO$ spectrum clearly shows a blue-shifted high-velocity wing at around the velocity $-20\;{\sim}\;-10\;km\;s^{-1}$, but it is not clear whether this high-velocity component has a bipolar nature in our observations. The observed CN spectra also show blue-shifted wing component but the existence of the red-shifted component is not clear, either. In some CN and HCN spectra, the highvelocity components appear as a different velocity component, not a broad line-wing component. The dense cores, traced by CN and HCN, exist in the 'head' of the AFGL 2591 cloud with an elongated morphology roughly in the north-south direction with a size of about 0.5 pc. The abundance ratio between CN and HCN is found to be about 2 - 3 within the observed region, which may suggest a possibility that this core is being affected by the embedded YSOs or by possible shocks from outside.

MOLECULAR CORES OF THE HIGH-LATITUDE CLOUD MBM7

  • MINH Y. C.;KIM H. G.;KIM S. J.;BERGMAN P.;JOHANSSON L. E. B.
    • Journal of The Korean Astronomical Society
    • /
    • v.33 no.1
    • /
    • pp.37-45
    • /
    • 2000
  • We have investigated the properties of the high-latitude cloud MBM 7 using the 3 mm transitions of CO, CS, HCN, $HCO^+,\;C_3H_2,\;N_2H^+$, and SiO. The molecular component of MBM 7 shows a very clumpy structure with a size of $\le$0.5 pc, elongated along the northwest-southeast direction, perpendicularly to an extended HI component, which could be resulted from shock formation. We have derived physical properties for two molecular cores in the central region. Their sizes are 0.1-0.3 pc and masses 1-2 M$\bigodot$ having an average volume density $\~2{\times}10^3 cm^{-3}$ at the peak of molecular emission. We have tested the stability of the cores using the full version of the virial theorem and found that the cores are stabilized with ambient medium, and they are expected not to be dissipated easily without external perturbations. Therefore MBM 7 does not seem to be a site for new star formation. The molecular abundances in the densest core appear to be much less (by about one order of magnitude) than the 'general' dark cloud values. If the depletions of heavy elements are not significant in the HLCs compared with those in typical dark clouds, our results may suggest different chemical evolutionary stages or different chemical environments of the HLCs compared with dense dark clouds in the Galactic plane.

  • PDF

Symbionin Produced by Intracellular Symbionts, which has Molecular Chaperone Activity and Novel Histidine Protein Kinase (Symbionin은 세포내 공생미생물이 생산하는 molecular chaperone 활성을 가진 색다른 histarmine protein kinase이다.)

  • 권오유;김원식
    • Journal of Life Science
    • /
    • v.6 no.3
    • /
    • pp.213-218
    • /
    • 1996
  • Symbionin, ahomologue of E. coli GroEL, produced by an intracellular symbiont of the pea aphid , has molecular chaperone activity bothin vitro and in vivo, and it is able to tarnsfer its high-energy phospholy group to other compounds through its autophosphorylation and phosphotransferase activity. The symbionin is a novel histidine protein Kinase and a senor molecular of the two-component pathway.

  • PDF

Identification of Species-Specific Components between Hanwoo and Holstein Meat (한우 및 홀스타인육의 품종간 특이성분의 검색에 관한 연구)

  • 황보식;이수원;임태진;정구용
    • Food Science of Animal Resources
    • /
    • v.21 no.3
    • /
    • pp.246-255
    • /
    • 2001
  • Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of muscles extracted with distilled water, saline solution, SDS or Trition X-100 showed simular protein patterns between Hanwoo and Holstein meat, indicating that SDS-PAGE technique may not be useful for the identification between Hanwoo and Holstein meat. Lectine blot analysis of muscle extracted with distilled water demonstrated that Hanwoo and Holstein meat had similar affinities for concanavalin A (Con A), ricinus communis agglutinin (RCA-120), ulex europaeus agglutinin (UEA-1) or peanut agglutinin (PNA) lectins. However, approximately 32.1 kDa component of Hanwoo meat showed high affinity for dolichos biflorus agglutinin (DBA) lectin. On the contrary, high molecular weight components of Holstein meat had the specific affinity for wheat germ agglutinin (WGA) lectin. Hanwoo meat-specific components were observed by lectin staining of heat-denatured meat at 100$^{\circ}C$ for 30 sec. Also, the component of heat-denatured meat at 100$^{\circ}C$ for 30 sec, which was slightly smaller than Hanwoo meat-specific component, was concentrated specifically in Holstein meat.

  • PDF

Development of Crosslinked Cational Starches and Evaluation of Their Performance in the Microparticle Retention System

  • Kim, Tae-Young;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.5
    • /
    • pp.24-30
    • /
    • 1999
  • Crosslinked corn starches were prepared to increase their molecular weights and their performance as a component of Compozil system was evaluated and compared with that of potato starches. It was shown that greater improvements in retention and strength properties could be achieved when crosslinded cationic corn starches rather than conventional cationic potato starches were used especially at high conductivity because of their molecular rigidity.

  • PDF

Molecular cloning, Expression and purification of Anthrax toxin from Bacillus anthracis

  • Yoon, Moon-Young
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.323-325
    • /
    • 2002
  • Bacillus Anthracis is the causative agent of anthrax. The major virulence factors are a poly-D glutamic acid capsule and three-protein component exotoxin, which is collectively known as anthrax toxin, protective antigen (PA, 83 kDa), lethal factor (LF, 90 kDa), and edema factor (EF, 89 kDa). These three proteins individually have no known toxic activities, but in combination with PA form two toxins (lethal toxin and edema toxin), causing different pathogenic responses in animals and cultured cells. However, it remains to be elucidated for pathogenic mechanism of anthrax toxin. In this study, we constructed toxin component in bacterial overexpression system and purified the native toxin from Bacillus anthracis delta sterne F32 using FPLC system. Recombinant toxin showed high homogeneity and rapid purification processes. Also, this recombinant toxin was comparable to B. anthracis native toxin in terms of cytotoxic effects on cultured cell lines.

  • PDF

Analysis of Fatty Acyl Groups of Diacyl Galactolipid Molecular Species by HPLC/ESI-MS with In-source Fragmentation

  • Gil, Ji-Hye;Hong, Jong-Ki;Choe, Joong-Chul;Kim, Young-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.8
    • /
    • pp.1163-1168
    • /
    • 2003
  • The structures of molecular species of galactolipids, such as monogalactosyl diacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG), isolated from wheat flour have been investigated using negative-ion electrospray ionization (ESI) mass spectrometry interfaced with high performance liquid chromatography (HPLC). According to the result of HPLC analysis, MGDG and DGDG were found to consist of mixtures of five and four molecular species, respectively. The galactolipids have been also analyzed to determine their fatty acid compositions, using HPLC/ESI-MS combined with in-source (or cone voltage) fragmentation. HPLC/ ESI-MS is very useful for one-step analysis of mixtures of galactolipids with a small sample quantity. Especially, the carboxylate anions produced in in-source fragmentations of the negative-ion of each component separated by HPLC provide valuable information on the composition of its fatty acyl chains.

Sur face Modification of Ultra High Molecular Weight Polyethylene Films by UV/ozone Ir radiation

  • Yun, Deuk-Won;Jang, Jin-Ho
    • Textile Coloration and Finishing
    • /
    • v.23 no.2
    • /
    • pp.76-82
    • /
    • 2011
  • Ultra High molecular weight polyethylene(UHMWPE) films were photooxidized by UV/ozone irradiation. Reflectance of the irradiated films decreased in the low wavelength regions of visible light, indicating destructive interference of visible light due to roughened surface. The UV treatment developed the nano-scale roughness on the UHMWPE films surface, which increased by two-fold from 82.6 to 156.6nm in terms of peak-valley roughness. The UV irradiation caused the oxygen content of the UHMWPE film surface to increase. Water contact angle decreased from $83.2^{\circ}$ to $72.9^{\circ}$ and surface energy increased from 37.8 to 42.6mJ/$m^2$ with increasing UV energy. The surface energy change was attributed to significant contribution of polar component rather than nonpolar component indicating surface photooxidation of UHMWPE films. The increased dyeability to cationic dyes may be due to the photochemically introduced anionic and dipolar dyeing sites on the film surfaces.

Characteristics of Hybrid Protective Materials with CNT Sheet According to Binder Type

  • Jihyun Kwon;Euisang Yoo
    • Elastomers and Composites
    • /
    • v.57 no.4
    • /
    • pp.197-204
    • /
    • 2022
  • Recently, the demand has increased for protective clothing materials capable of shielding the wearer from bullets, fragment bullets, knives, and swords. It is therefore necessary to develop light and soft protective clothing materials with excellent wearability and mobility. To this end, research is being conducted on hybrid design methods for various highly functional materials, such as carbon nanotube (CNT) sheets, which are well known for their low weight and excellent strength. In this study, a hybrid protective material using CNT sheets was developed and its performance was evaluated. The material design incorporated a bonding method that used a binder for interlayer combination between the CNT sheets. Four types of binders were selected according to their characteristics and impregnated within CNT sheets, followed by further combination with aramid fabric to produce the hybrid protective material. After applying the binder, the tensile strength increased significantly, especially with the phenoxy binder, which has rigid characteristics. However, as the molecular weight of the phenoxy binder increased, the adhesive force and strength decreased. On the other hand, when a 25% lightweight-design and high-molecular-weight phenoxy binder were applied, the backface signature (BFS) decreased by 6.2 mm. When the CNT sheet was placed in the middle of the aramid fabric, the BFS was the lowest. In a stab resistance test, the penetration depth was the largest when the CNT sheet was in the middle layer. As the binder was applied, the stab resistance improvement against the P1 blade was most effective.