• Title/Summary/Keyword: High Miller indices

Search Result 4, Processing Time 0.023 seconds

Preparation and characterization of ZnO photocatalyst and their photocatalysis

  • Lee, Sang-Deok;Nam, Sang-Hun;Jo, Sang-Jin;Bu, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.292-292
    • /
    • 2010
  • Among the semiconducting materials, ZnO has considerably attracted attention over the past few years due to the high activities in removing organic contaminants created from industry. In this work, ZnO nanoparticles were synthesized by spray pyrolysis method using the zinc acetate dihydrate as starting material at various synthesis temperatures. The structures of the synthesized ZnO were characterized by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Brunauer, Emmett & Teller (BET), Fourier Transformation Infrared (FT-IR), and UV-vis spectroscopy. The Miller indices of XRD patterns indicate that the synthesized ZnO nanoparticles showed a hexagonal wurtzite structure. With increasing synthesis temperature, the mean diameter of ZnO nanoparticles increased, and their crystallinity was improved. Also, the photocatalytic activity of ZnO was studied by the photocatalytic degradation of methyleneblue (MB) under UV irradiation (365 nm) at room temperature. The results show that the photocatalytic efficiency of ZnO nanoparticles was enhanced by increasing synthesis temperature.

  • PDF

Characterization and Photocatalytic effect of ZnO nanoparticles synthesized by spray-pyrolysis method

  • Lee, Sang-Duck;Nam, Sang-Hun;Kim, Myoung-Hwa;Lee, Kang-Suk;Kim, Young-Dok;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.101-101
    • /
    • 2010
  • ZnO shows a direct band gap of 3.37eV, large exciton binding energy (~60 meV), high oxidation ability, high sensitivity to many gases, and low cost, and it has been used in various applications such as transparent electrodes, light emitting diodes (LEDs), gas sensors and photocatalysts. Among these applications ZnO as photocatalyst has considerably attracted attention over the past few years because of its high activities in removing organic contaminants generated from industrial activities. In this research, ZnO nanoparticles were synthesized by spray-pyrolysis method using the zinc acetate dihydrate as starting material at synthesis temperature of $900^{\circ}C$ with concentration varied from 0.01 to 1.0M. The physical and chemical properties of the synthesized ZnO nanoparticles were examined by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transformation Infrared (FT-IR), and UV-vis spectroscopy. The Miller indices of XRD patterns indicate that the synthesized ZnO nanoparticles showed a hexagonal wurtzite structure. With increased precursor concentration, a primary, secondary particle sizes of ZnO nanoparticles increased by 0.8 to $1.5{\mu}m$ and 15 to 35nm, and their crystallinity was improved. Methyleneblue (MB) solution ($1{\mu}M$) as a test comtaminant was prepared for evaluating the photocatalytic activities of ZnO nanoparticles synthesized in different precursor concentration. The results show that the photocatalytic efficiency of ZnO nanoparticles was gradually enhanced by increased precursor concentration.

  • PDF

Homoepitaxial Growth Mode of $Si(5\;5\;12)-2\times1$ Confirmed by Scanning Tunneling Microscope (STH) (주사터널링현미경(STM) 기법으로 확인된 $Si(5\;5\;12)-2\times1$ 호모에피텍시 성장 방법)

  • Kim Hidong;Cho Yumi;Seo Jae M.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.37-44
    • /
    • 2006
  • The homoepitaxy of Si(5 5 12) at $495^{\circ}C$ has been studied by Scanning Tunneling Microscopy under ultrahigh vacuum. A Si-dimer is the basic building-block and preferentially adsorbs on a unique site, that is, the Si-dimer/adatom site at the (337) and the (225) subsections within the Si(5 5 12) unit cell. The Si(5 5 12) unit cell is faceted to $3\times(337)$ subsections filled with Si-addimers and $1\times(113)$ subsection. In this step the tetramer at the other (337) section within the unit cell is transformed to a dimer/adatom site which can accept Si-dimers. Each (337) section is faceted to $1\times(112)\;and\;1\times(113)$, and then finally the unit cell of Si(5 5 12) is faceted to $3\tiems(112)\;and\;4\times(113)$ and forms the facet of effective height, $2.34{\AA}$. In this step, mutual transformation between the honeycomb chain and the dimer/adatom occurs. Finally, the valley between (112) and (113) facets is filled. If once the last step is completed, the uniform and planar Si(5 5 12) terrace is recovered. From the present study, therefore, it can be concluded that the homoepitaxy on Si(5 5 12) is periodically achieved and such growth mode is quite unique since faceting of the substrate-unit-cell plays a critical role for controlling uniformity of the overlayer.