• 제목/요약/키워드: High Level Nuclear Waste

검색결과 236건 처리시간 0.024초

Conceptual design of ultra-high performance fiber reinforced concrete nuclear waste container

  • Othman, H.;Sabrah, T.;Marzouk, H.
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.588-599
    • /
    • 2019
  • This research presents a structural design of high-level waste (HLW) container using ultra-high performance fiber reinforced concrete (UHP-FRC) material. The proposed design aims to overcome the drawbacks of the existing concrete containers which are heavy, difficult to fabricate, and expensive. In this study, the dry storage container (DSC) that commonly used at Canadian Nuclear facilities is selected to present the proposed design. The design has been performed such that the new UHP-FRC alternative has a structural stiffness equivalent to the existing steel-concrete-steel container under various loading scenarios. Size optimization technique is used with the aim of maximizing stiffness, and minimizing the cost while satisfying both the design stresses and construction requirements. Then, the integrity of the new design has been evaluated against accidental drop-impact events based on realistic drop scenarios. The optimization results showed: the stiffness of the UHP-FRC container (300 mm wall thick) is being in the range of 1.35-1.75 times the stiffness of existing DSC (550 mm wall thick). The use of UHP-FRC leads to decrease the container weight by more than 60%. The UHP-FRC container showed a significant enhancement in performance in comparison to the existing DSC design under considered accidental drop impact scenarios.

Management of Spent Ion-Exchange Resins From Nuclear Power Plant by Blending Method

  • Kamaruzaman, Nursaidatul Syafadillah;Kessel, David S.;Kim, Chang-Lak
    • 방사성폐기물학회지
    • /
    • 제16권1호
    • /
    • pp.65-82
    • /
    • 2018
  • With the significant increase in spent ion-exchange resin generation, to meet the requirements of Waste Acceptance Criteria (WAC) of the Wolsong disposal facility in Korea, blending is considered as a method for enhancing disposal options for intermediate level waste from nuclear reactors. A mass balance formula approach was used to enable blending process with an appropriate mixing ratio. As a result, it is estimated around 44.3% of high activity spent resins can be blended with the overall volume of low activity spent resins at a 1:7.18 conservative blending ratio. In contrast, the reduction of high activity spent resins is considered a positive solution in reducing the amount of spent resins stored. In an economic study, the blending process has been proven to lower the disposal cost by 10% compared to current APR1400 treatment. Prior to commencing use of this blending method in Korea, coordinated discussion, and safety and health assessment should be undertaken to investigate the feasibility of fitting this blending method to national policy as a means of waste predisposal processing and management in the future.

Radiological analysis of transport and storage container for very low-level liquid radioactive waste

  • Shin, Seung Hun;Choi, Woo Nyun;Yoon, Seungbin;Lee, Un Jang;Park, Hye Min;Park, Seong Hee;Kim, Youn Jun;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.4137-4141
    • /
    • 2021
  • As NPPs continue to operate, liquid waste continues to be generated, and containers are needed to store and transport them at low cost and high capacity. To transport and store liquid phase very low-level radioactive waste (VLLW), a container is designed by considering related regulations. The design was constructed based on the existing container design, which easily transports and stores liquid waste. The radiation shielding calculation was performed according to the composition change of barium sulfate (BaSO4) using the Monte Carlo N-Particle (MCNP) code. High-density polyethylene (HDPE) without mixing the additional BaSO4, represented the maximum dose of 1.03 mSv/hr (<2 mSv/hr) and 0.048 mSv/hr (<0.1 mSv/hr) at the surface of the inner container and at 2 m away from the surface, respectively, for a 10 Bq/g of 60Co source. It was confirmed that the dose from the inner container with the VLLW content satisfied the domestic dose standard both on the surface of the container and 2 m from the surface. Although it satisfies the dose standard without adding BaSO4, a shielding material, the inner container was designed with BaSO4 added to increase radiation safety.

A review of the features, events, and processes and scenario development for Korean risk assessment of a deep geological repository for high-level radioactive waste

  • Kibeom Son;Karyoung Choi;Jaehyeon Yang;Haeram Jeong;Hyungdae Kim;Kunok Chang;Gyunyoung Heo
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4083-4095
    • /
    • 2023
  • Currently, various research institutes in Korea are conducting research to develop a safety case for deep geological repository for high-level radioactive waste (HLW). In the past, low and intermediate-level waste (LILW) was approved by a regulatory body by performing a post-closure safety assessment, but HLW has different disposal characteristics and safety objectives are different. Therefore, in the case of HLW, safety assessment should be performed based on these changed conditions, and specific procedures are also under development. In this paper, the regulatory status of prior research institutes, feature, event and process (FEP) and scenario development cases were investigated for well-organized FEP and scenario development methodologies. In addition, through the results of these surveys, the requirements and procedures necessary for the FEP and scenario development stage during the safety assessment of repository for HLW were presented. These review results are expected to be used to identify the overall status of previous studies in conducting post-closure risk assessment for HLW repository, starting with identifying regulatory requirements, the most basic element.

THE IMPACT OF FUEL CYCLE OPTIONS ON THE SPACE REQUIREMENTS OF A HLW REPOSITORY

  • Kawata, Tomio
    • Nuclear Engineering and Technology
    • /
    • 제39권6호
    • /
    • pp.683-690
    • /
    • 2007
  • Because of increasing concerns regarding global warming and the longevity of oil and gas reserves, the importance of nuclear energy as a major source of sustainable energy is gaining recognition worldwide. To make nuclear energy truly sustainable, it is necessary to ensure not only the sustainability of the fuel supply but also the sustained availability of waste repositories, especially those for high-level radioactive waste (HLW). From this perspective, the effort to maximize the waste loading density in a given repository is important for easing repository capacity problems. In most cases, the loading of a repository is controlled by the decay heat of the emplaced waste. In this paper, a comparison of the decay heat characteristics of HLW is made among the various fuel cycle options. It is suggested that, for a future fast breeder reactor (FBR) cycle, the removal and burning of minor actinides (MA) would significantly reduce the heat load in waste and would allow for a reduction of repository size by half.

고준위방사성폐기물에 대한 인식 조사 연구: 부산 기장군 지역 주민을 대상으로 (Perception Survey Study on High-level Radioactive Waste: Targeting Local Residents in Gijang-gun, Busan)

  • 강연희;양성희;조용인;김정훈
    • 한국방사선학회논문지
    • /
    • 제17권6호
    • /
    • pp.947-955
    • /
    • 2023
  • 본 연구는 원전 지역 주민들을 대상으로 사용후핵연료에 대한 인식을 조사하여 고준위방사성폐기물 처분시설 마련을 위한 기초자료로 활용하고자 수행하였다. 온라인으로 수집한 204부의 설문을 SPSS Window Ver 28.0을 이용하여 분석하였다. 집단 간 차이 검증을 위해 t-test, 일원배치분산분석(one way ANOVA)을 실시하였다. 그리고 변수 간의 연관성을 확인하기 위하여 상관분석을 실시하였다. 그 결과 첫째, 원자력 관련 사고에 대한 위험 인식은 성별과 학력에 따라 통계적으로 유의미한 차이를 보였다. 사용후핵연료 영구처분시설 건설에 대한 입장은 성별, 학력, 연령에 따라 통계적으로 유의미한 차이를 보였고, 사용후핵연료 관리 방안 마련 평가 기준별 중요성 인식은 학력, 연령에 따라 통계적으로 유의미한 차이를 나타냈다. 정보 제공 기관 신뢰도에서는 국회에 대한 신뢰도가 가장 낮은 것으로 조사되었다. 둘째, 변수 간 상관관계 분석 결과 지역 주민들이 현재 사용후핵연료 처리에 대한 대안이 필요하다는 것을 인식하고 있고, 영구처분시설 건설에 따른 재정지원이 필요한 것으로 나타났다. 따라서 고준위방사성폐기물 처분장 건립을 위해서는 정부에 대한 신뢰도를 높이고, 지역 주민 의견 수렴과 경제적 지원이 필요한 것으로 사료된다.

Deep Borehole Disposal of Nuclear Wastes: Opportunities and Challenges

  • Schwartz, Franklin W.;Kim, Yongje;Chae, Byung-Gon
    • 방사성폐기물학회지
    • /
    • 제15권4호
    • /
    • pp.301-312
    • /
    • 2017
  • The concept of deep borehole disposal (DBD) for high-level nuclear wastes has been around for about 40 years. Now, the Department of Energy (DOE) in the United States (U.S.) is re-examining this concept through recent studies at Sandia National Laboratory and a field test. With DBD, nuclear waste will be emplaced in boreholes at depths of 3 to 5 km in crystalline basement rocks. Thinking is that these settings will provide nearly intact rock and fluid density stratification, which together should act as a robust geologic barrier, requiring only minimal performance from the engineered components. The Nuclear Waste Technical Review Board (NWTRB) has raised concerns that the deep subsurface is more complicated, leading to science, engineering, and safety issues. However, given time and resources, DBD will evolve substantially in the ability to drill deep holes and make measurements there. A leap forward in technology for drilling could lead to other exciting geological applications. Possible innovations might include deep robotic mining, deep energy production, or crustal sequestration of $CO_2$, and new ideas for nuclear waste disposal. Novel technologies could be explored by Korean geologists through simple proof-of-concept experiments and technology demonstrations.

DEPTH AND LAYOUT OPTIMIZATIONS OF A RADIOACTIVE WASTE REPOSITORY IN A DISCONTINUOUS ROCK MASS BASED ON A THERMOMECHANICAL MODEL

  • Kim, Jhin-Wung;Koh, Yong-Kwon;Bae, Dae-Seok;Choi, Jong-Won
    • Nuclear Engineering and Technology
    • /
    • 제40권5호
    • /
    • pp.429-438
    • /
    • 2008
  • The objective of the present study is the depth and layout optimizations of a single layer, high level radioactive waste repository in a discontinuous rock mass with special joint set arrangements. A single layer repository model, considering variations in the repository depths, pitches, and tunnel spacings, is used to analyze the thermomechanical interaction behavior. It is assumed that the repository is constructed in saturated granite with joints; the PWR spent fuel in a disposal canister is installed in a deposition drift which is then sealed with compacted bentonite; and the backfill material is filled in the repository tunnel. The decay heat generated by the high level radioactive wastes governs the thermomechanical behavior of the near field rock mass of the repository. The temperature and displacement behavior of the repository is influenced more by the pitch variations than the tunnel spacing and repository depth. However, the stress behavior is influenced more by the repository depth variations than the pitch and tunnel spacing. For the final selection of the tunnel spacing, pitch, and repository depth, other aspects such as the nuclide migration through a groundwater flow path, construction costs, operation costs, and so on should be considered.