• Title/Summary/Keyword: High L/D ratio cylinder

Search Result 3, Processing Time 0.015 seconds

An Analytical and Experimental Study on the Thermal Shroud Effect to Minimize Thermal Deformation of a High L/D Ratio Cylinder (장축 실린더의 열변형 최소화를 위한 차열관 효과 해석 및 실험 연구)

  • Ahn, Sang-Tae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.5
    • /
    • pp.54-63
    • /
    • 2007
  • A barrel is a high length-to-diameter ratio cylinder that is influenced by environmental factors such as sunlight, precipitation, wind and clouds. Cross-barrel temperature differences caused by uneven heating or cooling lead to thermal deformation that degrades accuracy. Therefore, a barrel is covered by thermal shrouds to minimize the type of thermal deformation, "fall-of-shot". In this paper, an analytical and experimental study is presented to design the thermal shrouds for a gun barrel and to evaluate the thermal shroud effect. First, an analytical study on the thermal shroud effect to minimize thermal deformation of a gun barrel by sunlight and wind is performed. The coupled analysis of thermal fluid dynamics of the air flow between a barrel and thermal shrouds and thermal stresses of a barrel Is performed to clarify both the thermal shroud effect and the drift in gun muzzle orientation by thermal deformation. Second, experiments are carried out to test and evaluate the thermal shroud effect on the performance of a gun barrel. The drift in gun muzzle orientation against the solar radiation is confirmed by the experiments, and the results well agree with the analytical estimation. Third, three principal design factors that are presumed to have an effect on the performance of the thermal shrouds are also analyzed; sorts of shroud materials, wall-thickness of thermal shrouds, and distance of the gap between a barrel and thermal shrouds.

Numerical Analysis Study on the Turbulent Flow Characteristics around the Rotor Sail for Vessels (선박용 로터세일 주위의 난류 유동특성에 관한 수치해석적 연구)

  • Kim, Jung-eun;Cho, Dae-Hwan;Lee, Chang-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.648-656
    • /
    • 2022
  • As environmental regulations such as the International Maritime Organization (IMO)'s strategy to reduce greenhouse gases(GHG) are strengthened, technology development such as eco-friendly ships and alternative fuels is expanding. As part of this, ship propulsion technology using energy reduction and wind propulsion technology is emerging, especially in shipping companies and shipbuilders. By securing wind propulsion technology and introducing empirical research into shipbuilding and shipping, a high value-added market using eco-friendly technology can be created. Moreover, by reducing the fuel consumption rate of operating ships, GHG can be reduced by 6-8%. Rotor Sail (RS) technology is to generate a hydrodynamic lift in the vertical direction of the cylinder when the circular cylinder rotates at a constant speed and passes through the fluid. This is called the Magnus effect, and this study attempted to propose a plan to increase propulsion efficiency through a numerical analysis study on turbulence flow characteristics around RS, a wind power assistance propulsion system installed on a ship. Therefore, CL and CD values according to SR and AR changes were derived as parameters that affect the aerodynamic force of the RS, and the flow characteristics around the rotor sail were compared according to EP application.

Experimental Study on Effect of Inclination Angle on Natural Convection from Cylindrical Heatsinks with Plate Fins (평판-휜을 갖는 기울어진 원통형 히트 싱크의 자연 대류에 경사각이 미치는 영향에 대한 실험적 연구)

  • Park, Kuen Tae;Kim, Hyun Jung;Yoo, Jaisuk;Lee, Moon Gu;Kim, Dong-Kwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.4
    • /
    • pp.343-350
    • /
    • 2015
  • The natural convection heatsink is the most commonly used cooling device, especially for high-power LED lights, because of its reliability and low long-term cost. High power LED lights are generally used in an inclined configuration for street lamps and security lamps. However, it was difficult to estimate the thermal performance of an inclined heatsink, because the results from previous studies are not applicable to the inclined configuration. In this study, we measured the thermal performance of an inclined cylindrical heatsink with plate fins. Various fin numbers, fin heights, base temperatures, and inclination angles ($30^{\circ}$ and $60^{\circ}$) were examined. Based on the experimental results, the Nusselt number correlation is presented. This correlation is applicable when the Rayleigh number, ratio of the fin height to cylinder diameter, and fin number are in the ranges 100,000-600,000, 1/6-1/2, and 9-72, respectively.