• Title/Summary/Keyword: High Frequency Coil

Search Result 255, Processing Time 0.025 seconds

Electromagnetic Indirect Induction Fluid Heating System using Series Resonant PWM Inverter and Its Performance Evaluations (직렬공진 PWM인버터를 이용한 전자간절유도가열 열유체 에너지시스템과 그 성능평가)

  • 김용주;김기환;신대철
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.48-54
    • /
    • 2002
  • This paper is described the indirect induction heated boiler and induction heated hot air producer using the voltage-fed series resonant high-frequency inverter which can operate in the frequency range from 20 kHz to 50 kHz. A specially designed induction heater is composed of laminated stainless plates, which have many tiny holes and are interconnected by spot welding. This heater is inserted into the ceramic type vessel with external working coil. This working coil is connected to the inverter and turbulence fluid through this induction heater to moving fluid generates in the vessel. The operating performances of this unique appliance in next generation and its effectiveness are evaluated and discussed from a practical point of view.

Improvement of Weldlines of an Injection Molded Part with the Aid of High-Frequency Induction Heating (고주파 유도가열을 적용한 사출성형품의 웰드라인 개선)

  • Seo, Young-Soo;Son, Dong-Hwi;Park, Keun
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.437-440
    • /
    • 2009
  • High-frequency induction is an efficient way to heat mold surface by electromagnetic induction in a non-contact manner. Thanks to its capability of rapid heating and cooling of mold surface, it has been recently applied to the injection molding. The present study applies the high-frequency induction heating for elimination of weldlines in an injection-molded plastic part. To eliminate weldlines, the mold temperature of the corresponding weld locations should be maintained higher than the glass transition temperature of the resin material. Through experiments, the maximum temperature of $143^{\circ}C$ is obtained on the mold surface around the elliptic coil, while the temperature of the mold plate is lower than $60^{\circ}C$. An injection molding experiment is then performed with the aid of induction heating, and the effect of induction heating conditions on the surface appearance of the weldline is investigated.

  • PDF

Magnetic Nerve Stimulation Coils with Magnetic Mirror Effect (자계 거울 효과를 이용한 신경 자극 코일)

  • 한병희;김기왕;김재곤;박태석;이수열;조민형;양종수;김정회
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.287-293
    • /
    • 2002
  • For non-contact nerve stimulations using time varying magnetic field, high amplitude current pulses have to be applied to a magnetic nerve stimulation coil. To increase the magnetic stimulation frequency we have to increase both power supply capacity and cooling capacity of the magnetic nerve stimulator. To alleviate these problems. we propose a new magnetic nerve stimulation coil design methods. Utilizing magnetic mirror effect of a ferro-magnetic plate attached to a magnetic stimulation coil. we have improved efficiency of the stimulation coil. We have analyzed magnetic mirror effect for various kinds of stimulation coils using the finite element method, and we present experimental results obtained with several kinds of stimulation coils.

Efficiency Analysis of Magnetic Resonance Wireless Power Transmission using Superconductor Coil According to the Changing Position of Transmission and Receiving Coils (초전도 코일을 적용한 자기공명방식 무선전력전송의 송·수신 코일 배열에 따른 효율 분석)

  • Kang, Min-Sang;Choi, Hyo-Sang;Jeong, In-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.776-779
    • /
    • 2014
  • In this paper, we analyzed the efficiency of magnetic resonance wireless power transmission (WPT) using superconductor coil according to the changing position of transmission and receiving coils. We implemented a WPT system using a magnetic resonance at a frequency of 63.1 kHz. Transmission and receiving coils using superconductor coil were wound on a spiral manner of diameter 100mm. For comparison, transmission and receiving coils using normal conductor coil were designed under the same condition. At a distance of 50mm, we measured efficiency when transmission-receiving coils were matched 25%, 50%, 75% and 100%. When a superconductor coil was applied to the transmission and receiving units, efficiency of WPT was very high. In addition, in the case of the superconducting transmission-receiving coils, when coils matched 100% the efficiency was 30% and matched 25% the efficiency was 8%.

Dynamic Characteristics of Moving Coil Type Linear Oscillatory Actuator (가동코일형 리니어 왕복 액추에이터의 동특성)

  • Jang, S.M.;Jeong, S.S.;Kweon, C.;Park, H.C.;Moon, S.J.;Park, C.I.;Chung, T.Y.
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.3
    • /
    • pp.180-187
    • /
    • 2000
  • A moving-coil-type linear oscillatory actuator(LOA) consists of the NdFeB permanent magnets with high specific energy as the stator, a coil-wrapped nonmagnetic hollow rectangular structure. The LOA system was represented by the voltage equation of coil and the mechanical equation of motion. This set of equations was manipulated in state-space form. The EMF constant kE of equation parameters in state-space form can be obtained by using the induced voltage in armature coils at open circuit test. kE and other parameters provide the system matrices and transfer function for frequency response and dynamic simulation. Voltage source inverter-fed LOA is examined aiming to compare with results of simulation.

  • PDF

Construction of Large 3-axis Square Helmholtz Coil system for the Power Frequendy Magnetic Field Immunity Test (전원주파수 교류자기장 내성평가용 대형 3-축 사각 헬름홀쯔 코일 시스템 제작)

  • 유권상;김창석;정낙삼
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.905-909
    • /
    • 1995
  • We constructed the large 3-axis square Helmholtz coil system for the power frequency magnetic field immunity test. We measured the coil factors and magnetic field homogeneities of the fabricated 3-axis square Helmholtz coil. The experimental results for the field homogeneities are in agreement with the theoretical data. From these results, we determined the effective areas for the immunity test. We also confirmed that the low current using the multi-turns coil can be applicable to the immunity test for the high field in short duration.

  • PDF

A Study of Rotor Fault Detection for the Induction Motor Using Axial Leakage Magnetic Flux (축방향 누설자속 측정에 의한 유도전동기의 회전자 결함검출에 관한 연구)

  • Shin, Dae-Cheul;Kim, Young-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.1
    • /
    • pp.132-137
    • /
    • 2006
  • The second part of paper related rotor failure is to evaluate that the axial magnetic flux measurement could be used as a tool of the condition monitoring system for the induction motor and to develope the diagnostic algorithm for the various fault in the electric motors. The magnetic leakage flux signal is captured by the flux coil located at the end of motor without the disturbance of the operation. And the signal is analyzed both time and frequency domain to detect the failure of the motor. Specific signature can be described in tin and frequency domain for each fault of the motor. The experimental test found that the rotor failures - broken rotor bar, broken end ing and rotor eccentricity, could be detected from the spectrum with high resolution. The method of detecting the rotor fault was found by analysing the specific frequency and the sideband of the rotor bar pass frequency from axial leakage flux spectrum. In addition the optimal flux coil and measuring equipment for the axial leakage flux measurement was verified and the diagnostic method for the detection of the rotor related failure was developed.

Analysis and Application of Compact Planar Multi-Loop Self-Resonant Coil of High Quality Factor with Coaxial Cross Section (고품질 계수를 갖는 소형 평판형 동축 단면 다중 루프 자기 공진 코일 해석 및 응용)

  • Son, Hyeon-Chang;Kim, Jinwook;Kim, Do-Hyeon;Kim, Kwan-Ho;Park, Young-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.4
    • /
    • pp.466-473
    • /
    • 2013
  • In this paper, a compact planar multi-loop self-resonant coil of high quality factor with a coaxial cross section is proposed for effective wireless charging. The proposed coil has high Q-factor and a resonant frequency of a coil can be easily controlled by adjusting distributed capacitance. For designing the coil, a self-inductance and a distributed capacitance are calculated theoretically. The self-inductance is calculated from the sum of the mutual energies between small circular loops that are made by dividing the cross section of the coil. To verify its properties and calculation results, the self-resonant coils are fabricated by using a coaxial cable with characteristic impedance of $50{\Omega}$. The measured frequencies are very consistent with the calculated ones. In addition, the resonant frequency can be adjusted slightly by the tuning parameter ${\gamma}$. The resonant coils are applied to a tablet PC, the Q-factors of the Tx and Rx resonant coils are 282 and 135, respectively. As a result of measurement when height between the two resonant coils is 4.4 cm, the power transfer efficiency is more than 80 % within a radius of 5 cm.

Analysis of Spin Valve Tunneling Magnetoresistance Sensor for Eddy Current Nondestructive Testing

  • Kim, Dong-Young;Yoon, Seok-Soo;Lee, Sang-Hun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.6
    • /
    • pp.524-530
    • /
    • 2008
  • The spin valve tunneling magnetoresistance (SV-TMR) sensor performance is analyzed using Stoner-Wohlfarth model for the detection of eddy current signals in nondestructive testing applications. The SV-TMR response in terms of the applied AC magnetic field dominantly generates the second harmonic amplitude in hard axis direction. The second harmonic eddy current signal detection using SV-TMR sensor shows higher performance than that of the coil sensor at lower frequencies. The SV-TMR sensor with high sensitivity gives a good solution to improve the low frequency performance in comparison with the inductive coil sensors. Therefore, the low frequency eddy current techniques based on SV-TMR sensors are specially useful in the detection of hidden defects, and it can be applied to detect the deeply embedded flaws or discontinuities in the conductive materials.

A Study on the Fabrication and High Frequency Characteristics of Close type Magnetic Planar Inductor (폐자로형 평면 인덕터의 제조 및 고주파 특성에 관한 연구)

  • 이창호;신동훈;남승의;김형준
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.4
    • /
    • pp.241-248
    • /
    • 1998
  • In accordance with tendency to miniaturization and high frequency operation of electronic products, extensive efforts of miniaturizing magnetic devices such as inductors, transformers and magnetic sensors are being made. In order to study on fabrication and characteristic of micro-magnetic devices, we carried out two sets of experiments. One is to develop a magnetic film that is suitable for high frequency operation, and the other is to develop the fabrication processes for realizing the micro-coil with meander shape. Magnetic films were composed of FeTa(N,C) fabricated by DC magnetron sputtering system. Their microstructures were nanocrystalline structure and magnetic properties showed Bs:13~17 kG, Hc:0.1~0.2 Oe and $\mu$':2000~4000. Cu coil pattern fabricated by selective electroplating process showed good electrical conductivity. In the case of air core inductors, inductance (L) of 50 nH, resonance frequency $(f_R)$ of 700 MHz, and quality factor (Q) of 30 at 200 MHz could be obtained. In the case of close type magnetic inductors, inductance (L) of 150 nH, resonance frequency $(f_R)$ of 100 MHz, and quality factor (Q) of 4 at 10~30 MHz could be obtained.

  • PDF