• Title/Summary/Keyword: High Flow Rate

Search Result 3,258, Processing Time 0.03 seconds

Development of Atomization Spraying System for Solvent-free Paint(I) - Flow Analysis of Hydraulic Actuator - (무용제 도료용 무화 분사시스템 개발(I) - 유압 엑츄에이터의 유동해석 -)

  • Kim, Dong-Keon;Kim, Bong-Hwan;Shin, Sun-Bin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.61-66
    • /
    • 2011
  • The purpose of this paper is to design a hydraulic actuator to operate under high pressure conditions. The flow characteristics under design conditions of hydraulic actuator were numerically conducted by commercial fluid dynamic code(ANSYS CFX V11). The numerical analysis was performed by transient technique according to the variation of stroke times, which was changed from 0 to 1 second by interval of 0.01. Turbulence model, $k-\omega$ SST was selected to secure more accurate prediction of hydraulic oil flow. The ICEM-CFD 11 and CFXMesher, reliable grid generation software was also adapted to secure high quality grid necessary for the reliable analysis. According to the simulation results, the flow rate which was supplied to the hydraulic actuator was 30.4l/min. These results are in good agreement with design results within 3.5% error.

Electrochemical Damage Characteristics of Anodized 5083 Aluminum Alloy with Flow Rate in Seawater (양극산화 처리된 5083 알루미늄 합금의 해수 내 유속변화에 따른 전기화학적 손상 특성)

  • Park, Il-Cho;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.4
    • /
    • pp.349-356
    • /
    • 2016
  • In this study, electrochemical damage behaviors with flow rate were investigated for anodized 5083 aluminum alloy in seawater. As the results of anodic polarization experiments and potentiostatic experiments at +1.0 V (vs. SSCE), the non-flow condition presented largely damaged surface resulting from a tendency of local pitting damage. Under various flow rate conditions, however, less surface damages under the application of anodic potential was obtained which is attributed to no accumulation of $H^+$ and $Cl^-$ ions on the surface. On the other hand, the results of the potentiostatic experiments at -1.0 V (vs. SSCE) with flow rate showed that anodized 5083 aluminum alloys could achieve the effective cathodic protection by low cathodic protection current density less than $2.61{\times}10^{-7}A/cm^2$ even under high flow rate of 1 m/s.

An Experimental Study on the Leakage Characteristics of a Labyrinth Seal (Labyrinth Seal 의 누설 특성 실험)

  • 하현천;변형현;박철현
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.141-146
    • /
    • 1999
  • An experimental investigation on the leakage characteristics of a labyrinth seal, high-low seal, is studied. Pressure distribution and leakage flow rate are measured along with the shaft speed and the pressure difference between the entrance and the exit. Pressure distribution vanes almost linearly along the seal and the leakage flow rate increases as the increase of the pressure difference. Furthermore, it is found that both the shaft speed and the shaft vibration have no influence on the leakage of the labyrinth seal.

  • PDF

Development of an Ejector System for Operating of Chemical Lasers (III) - Development and Performance Validation of a Full-Scale Ejector System for High Power Chemical Lasers - (화학레이저 구동용 이젝터 시스템 개발 (III) - 고출력 화학레이저용 실물 크기의 이젝터 시스템 개발 및 성능 검증 -)

  • Kim, Se-Hoon;Jin, Jung-kun;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.9-15
    • /
    • 2005
  • From the geometric parameter study, an optimal ejector design procedure of pressure recovery system for chemical lasers was acquired. For given primary flow reservoir conditions, an up-scaled ejector was designed and manufactured. In the performance test, secondary mass flow rate of 100g/s air was entrained satisfying the design secondary pressure, $40{\sim}50torr$. Performance validation of a supersonic ejector system along with an investigation of effects of supersonic diffuser was conducted. Placement of the diffuser at the secondary inlet further reduced diffuser upstream pressure to 7torr. Lastly, the duplicate of apparatus (air 500g/s secondary mass flow rate each) was built and connected in parallel to assess proportionality behavior on a system to handle larger mass flow rate. Test and comparison of the parallel unit demonstrated the secondary mass flow rate was proportional to the number of individual units that were brought together maintaining the lasing pressure.

Development of Flow Stress equation of High strength steel for automobile using Neural Network and Precision Roll Force Model (신경망 함수를 이용한 자동차강의 변형저항 개발 및 압연하중 예측)

  • Kwak W. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.145-152
    • /
    • 2004
  • The flow stress value was calculated by comparing predicted and measured roll force. Using basic on-line roll force model and logged mill data the flow stress equation of high strength steel for automobile was derived. The flow stress equation consists of the flow stress equation of carbon steel and flow stress factor calculated by neural network with input parameters not only carbon contents, strip temperature, strain, and strain rate, but also compositions such as Mn, p, Ti, Nb, and Mo. Using the flow stress equation and basic roll force model, precision roll force model of high strength steel for automobile was derived. Using test set of logged mill data the flow stress equation was verified.

  • PDF

Analysis of In-Cylinder Flow Characteristics of a High Speed D.I. Diesel Engines (고속 직접분사식 디젤 엔진의 실린더내 유동 해석)

  • Park, Sang-Chan;Ryu, Jae-Deok;Lee, Gi-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1276-1283
    • /
    • 2002
  • Recently, HSDI (High Speed Direct Injection) diesel engine has been spotlighted as a next generation engine because it has a good potential for high thermal efficiency and fuel economy. This study was carried out to investigate the in-cylinder flow characteristics generated in a 4-valve small diesel cylinder head with a tangential and helical intake port. The flow characteristics such as coefficient of flow rate(Cf), swirl ratio (Rs), and mass flow rate (ms) were measured in the steady flow test rig using the impulse swirl meter and the analysis of in-cylinder flow field was conducted by experiment using the PIV and calculation using the commercial CFD code. As the results from steady flow test indicate, the mass flow rate of the cylinder head with a short distance between the two intake ports is increased over 13% than that of the other head. However, the non-dimensional swirl ratio is decreased approximately 15%. From in-cylinder flow characteristics obtained by PIV and CFD calculation, we found that the swirl center was eccentric from the cylinder center and the velocity distribution became uniform near the TDC. In addition, the results of the calculation are good agreement with the experimental results.

A Study on the Characteristics of Two-Step-Flow-Control Fluidic Device (2단 유량제어 Fluidic Device의 특성에 관한 연구)

  • Cho, Bong-Hyun;Bae, Yoon-Yeong;Park, Jong-Kyun;Yoo, Seong-Yeon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.3 s.12
    • /
    • pp.53-61
    • /
    • 2001
  • Vortex type Fluidic Device(FD) which is installed at the bottom of Safety Injection Tank(SIT) controls the discharge flow rate from the tank. In case of loss of coolant accident the injection water flows into primary system in two steps; initial high flow rate for certain period of time and subsequent low flow rate. By two-step control of the discharge flow rate, FD can ensure the effective use of water in the tank. A small-scale FD has been tested to obtain a required flow characteristics maintaining full pressure and height of prototype, which are the major contributing parameters. Through the testing of many different arrangements of internal geometry of FD, most appropriate one was selected and its performance data was obtained. As characteristics of FD, time dependent Euler number, flow rate and pressure are presented and discussed. Also a method to predict the full size FD is presented.

  • PDF

Mist Cooling of High-Temperature Cylinder Surface (고온 실린더의 미스트 냉각)

  • Kim, Mu-Hwan;Lee, Su-Gwan;Park, Ji-Man;Lee, Pil-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.448-457
    • /
    • 2002
  • Heat treatment such as quenching of a high-temperature cylinder is being used on steel to produce high strength levels. Especially, the mist cooling with the high and uniform surface heat flux rate s expected to contribute for better products. The experimental mist cooling curve is produced for better understanding, and two distinct heat transfer regions are recognized from the cooling curve produced. It is shown that the liquid film evaporation dominated region follows the film boiling-dominated region as decreasing the temperature of test cylinder by mist flow. Based on the intuitive view from some previous investigations, a simplified model with some assumptions is introduced to explain the mist cooling curve, and it is shown that the estimation agrees well with our experimental data. In the meanwhile, it is known that the wetting temperature, at which surface heat flux rate is a maximum, increases with mass flow rate ratio of water to air ($\varkappa$ < 10). However, based on our experimental data, it is explained that there exists a critical mass flow rate ratio, at which the wetting temperature is maximum, in the range of 3 < $\varkappa$ < 130. Also, it is described that despite of the same value of $\varkappa$, the wetting temperature may increase with mist velocity.

Helium-Air Exchange Flow with Fluids Interaction (유체간섭을 동반하는 헬륨과 공기의 치환류)

  • T.I. Kang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.372-380
    • /
    • 1997
  • This paper describes experimental investigations of helium-air exchange flows through parti¬tioned opening and two-opening. Such exchange flows may occur following rupture accident of stand pipe in high temperature gas cooled reactor. A test vessel with the two types of small open¬ing on top of test cylinder is used for experiments. An estimation method of mass increment is developed and applied to measure the exchange flow rate. A technique of flow visualization by Mach-Zehnder interferometer is provided to recognize the exchange flows. In the case of exchange flow through the partitioned opening, flow passages of upward flow of the helium and downward flow of the air within the opening are separated by vertical partition, and the two flows interact out of entrance and exit of the opening. Therefore, an experiment of the exchange flow through two-opening is made to investigate effect of the fluids interaction of the partitioned opening sys¬tem. As a result of comparison of the exchange flow rates between the two types of the opening system, it is found that the exchange flow rate of the two-opening system is larger than that of the partitioned opening system due to absence of the effect of fluids interaction. Finally, the fluids interaction between the upward and downward flows through the partitioned opening is found to be an important factor on the helium-air exchange flow.

  • PDF

An Experimental Study on the Estimation Flow-rate of Venturi Pump Using LightGBM (LightGBM을 이용한 수력 펌프 유량 추정의 실험적 연구)

  • Jin Beom Jeong;Jihwan Lee;Myeongcheol Kang
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.123-132
    • /
    • 2023
  • In disaster situations, to facilitate rapid drainage, electric underwater pumps are installed manually. This poses a high risk of electric shock accidents due to a short circuit, and a lot of time is required for hose connection and installation of electrical devices. To solve these problems, a Venturi pump using the venturi effect without external power is used. However, Venturi pumps that operate without external power make it difficult to install flow sensors such as electric devices; consequently, it is difficult to check the real-time flow rate. This paper proposes a flow estimation logic to replace the function of the flow sensor for the venturi pump . To develop the flow estimation logic, the flow characteristics of the venturi pump, according to the operating conditions, were checked. After that, the relationship with the flow rate of the venturi pump was defined using a pressure sensor corresponding to a low-cost sensor. Finally, an analysis of the estimation error was performed using the developed flow estimation logic.