• Title/Summary/Keyword: High Fatigue Load

Search Result 333, Processing Time 0.025 seconds

A study on deformation and strength of polymer composites using automobiles (자동차용 폴리머 복합재료의 변형과 강도에 관한 연구)

  • Shin, Je-Hoon;Lim, Jae-Kyoo;Park, Han-Ju
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.238-243
    • /
    • 2000
  • The effect of the temperature, the fatigue and the test speed on DEN(double edged notch) specimen which was made by the pp-rubber composites during fracture was stuied. DEN specimen was made on PP-rubber composites through the injection molding. With increasing temperature the fracture strength is linearly decrease and the fracture energy is first increase by $0^{\circ}C$ and after that decrease. In the same temperature the fracture strength during increasing the notch radius is hardly increase. The fracture behaviour at low and high test speed is different entirely. At high test speed plastic region is small and fracture behaviour was seen to brittle fracture tendency. The deformation mechanism of polypropylene-rubber composites during fracture was studied by SEM fractography. A strong plastic deformation of the matrix material ahead of the notch/crack occured. The deformation seem to be enhanced by a thermal blunting of the notch/crack.

  • PDF

STUD Welding on High Hardness Armor Steel of KWV (차륜형장갑차 고경도장갑강에 대한 스터드 용접의 적용)

  • Cho, Hwan-Hwi;Shin, Yong-cheol;Yi, Hui-jun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.567-573
    • /
    • 2016
  • GMAW and GTAW processes have been used for welding of equipment mounting pads during decades. For improving the mobility and survivability of KWV(Korean Wheeled Vehicle), various types of equipment are required and numbers of pads for welding were increased. In this research, for improving productivity of mounting pads welding process, new technology of stud welding was studied. In this study, mechanical properties of stud weldment were investigated to compare with those of GMAW weldment. Also, research of stud weldment durability was carried out and proved its fatigue strength under the condition of KWV's 32,000 km load profile.

Nonlinear finite element analysis of Concrete Filled Carbon Tube Columns Using Plasticity Theory (축하중을 받는 콘크리트 충전 탄소섬유튜브 기둥의 소성 이론을 적용한 비선형 유한요소해석)

  • Kim, Heecheul;Seo, Sang Hoon;Lee, Young Hak
    • KIEAE Journal
    • /
    • v.7 no.6
    • /
    • pp.119-126
    • /
    • 2007
  • In the field of composite structures, the use of carbon tube for the confinement of concrete has been arisen since 1990's. However, experimental and analytical studies were limited to those of reinforced concrete and concrete filled steel tube. The carbon tube provides excellent confinement capabilities for concrete cores, enhancing compressive strength and ductility of concrete significantly. The carbon tube has high tensile strength, light weight, corrosion immunity and high fatigue strength properties. Since carbon fiber is an anisotropic material, carbon tube could be optimized by adjusting the fiber orientation, thickness and the number of different layers. In this study, both experimental and analytical studies of axial and lateral behavior of full-scale CFCT (Concrete Filled Carbon Tube) columns subjected to monotonic axial load were carried out using Drucker-Prager theory. And, based on comparison results between experiment results and analytical results, k factor estimation was proposed for effective analysis.

Concrete Crack of Ballastless Track Structure and its Repair

  • Xie, Yongjiang;Li, Huajian;Feng, Zhongwei;Lee, Il-Wha
    • International Journal of Railway
    • /
    • v.2 no.1
    • /
    • pp.30-36
    • /
    • 2009
  • Crack and its damage of structure concrete in both FBS and TBS ballastless track are presented. The cause of concrete crack is analyzed. According to corresponding quantitative equation, effective technical measures to depression crack of concrete are put forward, at the same time the rationality of elastic ratio for HGT has been proved. At last, by the analysis of the characteristic of high-speed train, which are serving in the open air, bearing fatigue load, the short time for maintenance window and high speed of service, technical requirement for concrete repair material, repair technology and repair tools of ballastless track structure are presented.

  • PDF

A Study on Resistance Spot Welding of Dissimilar Sheet Metals(Aluminum Alloy - Steel Sheets) (이종재료(알루미늄합금-강판)의 저항 점용접에 관한 연구)

  • 손병천;우승엽;이재범;최용범;장희석
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.42-62
    • /
    • 1997
  • Resistance spot welding has been widely used in the sheet metal joining processes because of its high productivity and convenience. Recently, automobile industries are trying to replace partly steel sheets with aluminum alloy sheets. Among currently produced aluminum alloys, Al alloy sheets of Al-Mg-Si(6000 series) are being tested. Especially, 6000 series are the most probable substitute in view of strength and weldability. In this paper, an attempt was made to apply resistance spot welding to joining of dissimilar sheet metals (KS6383+SCPZn or KS6383+SHCP). An effort was made to balance heating rate in the Al alloy with that in the steel sheets by increasing electrode tip diameter. Although resistance spot welding of Al alloy sheet and sheet metals does not produce desirable nugget, it proved to have reasonable strength if optimal weld condition is found by tensile-shear strength and fatigue life test. Since spot weld joints in automobile are always experiencing repeated load, spot welding methodology proposed in this paper is found to be not suitable to automobile body manufacturing.

  • PDF

Structural Analysis for Optimal Design of Anchor Bolts and Brackets for Fixing External Finishing Materials (외부마감재 고정용 앙카볼트 및 브라켓의 최적설계를 위한 구조해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.91-96
    • /
    • 2020
  • For the anchor bolts and brackets that fix the stone wall, which is an external finishing material, it is necessary to maintain the performance required for the mechanical structure from the initial design stage and secure high durability. For this, the design and safety evaluation in consideration of the load conditions are necessary, so the structural analysis applying the finite element analysis technique was performed as a method to verify durability. As a result of structural analysis for various shapes for optimal design, a reinforcing structure was added to alleviate the maximum stress generated at the rear part of the bracket in contact with the bolt. In addition, a reinforcing plate was additionally attached to the bracket to relieve the stress concentration of the L-shaped bracket to make the stress distribution uniform, so that the safety factor satisfies the standard conditions. In addition, the fatigue life analysis by cyclic load was performed, and the fatigue safety factor was analyzed. As a result, the durability was obtained.

An Experimental Study on the Fatigue Behaviors Strengthened by Ventilation-Glass Fiber Plate of Reinforced Concrete Beams (철근콘크리트 보의 통기성 유리섬유판 보강에 따른 피로거동에 관한 실험적 연구)

  • Kim, Woonhak;Kang, Seokwon;Shin, Chunsik
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.4
    • /
    • pp.391-400
    • /
    • 2012
  • Recently, the construction industry commonly uses FRP as a reinforcement material because of its material advantages. FRP attached reinforcement has various advantages such as high strength, stiffness, excellent durability and construction practicability comparing to its weight. However, external attachment of FRP is water-tighted with low water permeable material, not draining water, probably causing damages on a permanent structure. The study manufactured it through pultrusion and examined GP(glass fiber panel) of which material-mechanical properties are almost same as the existing FRP but durability and attachment performance are better by stationary experiments, testing load-deflection curve, destruction types and load-deflection relation under repetitive loading test. As a result of 2,000,000 fatigue tests, it did not result in the destruction and showed excellent permanent attachment and durability as it displays significantly low compressive strain of concrete.

Whole-life wind-induced deflection of insulating glass units

  • Zhiyuan Wang;Junjin Liu;Jianhui Li;Suwen Chen
    • Wind and Structures
    • /
    • v.37 no.4
    • /
    • pp.289-302
    • /
    • 2023
  • Insulating glass units (IGUs) have been widely used in buildings in recent years due to their superior thermal insulation performance. However, because of the panel reciprocating motion and fatigue deterioration of sealants under long-term wind loads, many IGUs have the problem of early failure of watertight properties in real usage. This study aimed to propose a statistical method for wind-induced deflection of IGU panels during the whole life service period, for further precise analysis of the accumulated fatigue damage at the sealed part of the edge bond. By the estimation of the wind occurrence regularity based on wind pressure return period, the events of each wind speed interval during the whole life were obtained for the IGUs at 50m height in Beijing, which are in good agreement with the measured data. Also, the wind-induced deflection analysis method of IGUs based on the formula of airspace coefficient was proposed and verified as an improvement of the original stiffness distribution method with the average relative error compared to the test being about 3% or less. Combining the two methods above, the deformation of the outer and inner panes under wind loads during 30 years was precisely calculated, and the deflection and stress state at selected locations were obtained finally. The results show that the compression displacement at the secondary sealant under the maximum wind pressure is close to 0.3mm (strain 2.5%), and the IGUs are in tens of thousands of times the low amplitude tensile-compression cycle and several times to dozens of times the relatively high amplitude tensile-compression cycle environment. The approach proposed in this paper provides a basis for subsequent studies on the durability of IGUs and the wind-resistant behaviors of curtain wall structures.

An overview of the structural requirements of passenger carrying rolling stock according to EN12663 and prEN15227 (EN12663과 prEN15227에 따른 객차의 구조적 요구사항 검토)

  • Ainoussa, Amar;Chang, D.S.;Paik, J.S.
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.816-823
    • /
    • 2007
  • As the South Korean rolling stock industry is developing designs for full compliance with the European Standards, it is fitting to take a look at these two core standards. The paper presents an overview of the load cases and structural requirements developed in Europe for the design of safe and compatible rolling stock vehicles. These load cases and structural requirements have been compiled into two standards namely EN12663 and EN15227. Standard EN12663 was developed as a reference design requirements standard. The work was mandated and sponsored by the European Committee for Standardization and Standard issuing National Institutions. EN12663 specifies a series of proof and fatigue load cases for European rolling stock regulations compliant vehicle designs. As EN12663 does not address the crashworthiness issue, a dedicated crashworthiness standard, EN15227, was therefore developed in a similar manner through industry wide consultations managed by a Trans-European working group of experienced engineers and specialists. In both standards, the vehicle and/or trains are grouped into categories reflecting the vehicle types and/or their indented operational function. EN15227, developed to complement EN12663, addresses the "passive" crashworthiness capability of the vehicles and trains. EN15227 specifies reference crash scenarios similar to those found in the Technical Specification for Interoperability (TSI) of high speed trains operating in Europe. The overview also touches on a general comparison with the corresponding British Group Standard (GM/RT2100) and also the UIC leaflet based load cases. The exercise is extended to pertinent design load cases specified by the Federal Railroad Administration (FRA) in the US.

  • PDF

Study on Creep Damage Model of 1Cr1Mo1/4V Steel for Turbine Rotor (1Cr1Mo1/4V 터빈 로터강의 크리프 손상 모델에 관한 연구)

  • Choi, Woo-Sung;Fleury, Eric;Song, Gee-Wook;Kim, Bum-Shin;Chang, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.447-452
    • /
    • 2011
  • It is well known that the dominant damage mechanisms in high-temperature steam turbine facilities such as rotor and casing are creep and fatigue damages. Even though coupling of creep and fatigue should be considered while predicting the life of turbine facilities, the remaining life of large steam turbine facilities is generally determined on the basis of creep damage because the turbines must generate stable base-load power and because they are operated at a high temperature and pressure for a long time. Almost every large steam turbine in Korea has been operated for more than 20 years and is made of steel containing various amounts of principal alloying elements nickel, chromium, molybdenum, and vanadium. In this study, creep damage model of 1Cr1Mo1/4V steel for turbine rotor is proposed and that can assess the high temperature creep life of large steam turbine facilities is proposed.