• 제목/요약/키워드: High Fatigue Load

검색결과 333건 처리시간 0.02초

나노기공구조를 가진 알루미나필름의 트라이볼로지 특성 (Tribological Properties of Nanoporous Structured Alumina Film)

  • 김효상;김대현;안효석;한준희;이우
    • Tribology and Lubricants
    • /
    • 제26권1호
    • /
    • pp.14-20
    • /
    • 2010
  • Tribological properties of nanoporous structured alumina film was investigated. Alumina film (AAO: anodic aluminum oxide) of $60{\mu}m$ thickness having nanopores of 45 nm diameter with 105 nm interpore-diatance was fabricated by mild anodization process. Reciprocating ball-on-flat sliding friction tests using 1 mm diameter steel ball as a counterpart were carried out with wide range of normal load from 1 mN to 1 N in an ambient environment. The morphology of worn surfaces were analyzed using scanning electron microscopy. The friction coefficient was strongly influenced by the applied normal load. Smooth layer patches were formed on the worn surface of both AAO and steel ball at relatively high load (100 mN and 1 N) due to tribochemical reaction and compaction of wear debris. These tribolayers contributed to the lower friction at high loads. Extremely thin layer patches, due to mild plastic deformation of surface layer, were sparsely distributed on the worn surface of AAO at low loads (1 mN and 10 mN) without the evidence of tribochemical reaction. Delaminated wear particles were generated at high loads by fatigue due to repeated loading and sliding.

고내구성 교면포장 아스팔트 혼합물의 공용성 평가에 관한 연구 (Performance Evaluation of the High Durability Asphalt Mixture for Bridge Deck Pavements)

  • 박희문;최지영;이현종;황의윤
    • 한국도로학회논문집
    • /
    • 제9권2호
    • /
    • pp.51-62
    • /
    • 2007
  • 최근 국내에서는 교면포장의 파손에 따른 교량 바닥판의 열화 및 운전자 안정성의 문제가 대두되고 있다. 기존 아스팔트 재료는 교량에서 발생하는 열악한 환경에 적용하기에는 한계가 있어 교량 바닥판을 보호하고 상대적으로 큰 처짐에 대하여 장기간 견딜 수 있는, 피로저항성이 우수한 고내구성 교면포장 아스팔트 혼합물의 개발이 필요하게 되었다. 이에 SBS 첨가물과 첨가제를 사용하여 생산성 및 작업성이 우수하고 피로균열저항성이 뛰어난 교면포장용 아스팔트 바인더를 개발하였다. 새로운 아스팔트 바인더는 회전점도시험 (RV test), 인화점시험 (Flash point test), 동적전단시험(DSR test), 저온빔시험(BBR test) 등을 통하여 PG 70-34의 공용등급으로 확인되었다. 본 연구에서 개발된 아스팔트 바인더를 사용한 혼합물의 공용성을 평가하기 위하여, 피로시험, 휠트래킹시험, 수분손상시험 등을 실시하였으며 실물크기의 윤하중시험을 통하여 소성변형 저항성 및 피로균열 저항성에 대하여 평가하였다. 실내공용성 시험을 통하여 교면포장용 아스팔트 혼합물이 SBS 개질 혼합물에 비하여 3배 이상의 피로수명을 가졌다. 또한, 윤하중시험에서도 소성흐름이 발생하지 않았고, 피로균열은 250,000회 이상을 재하하여도 PG 64-22 혼합물의 38% 밖에 나타나지 않았다.

  • PDF

SUS 304 강의 크리프 온도역에 있어서 피로균열성장거동에 관한 연구 (A Study on Fatigue Crack Growth Behavior at a Creep Temperature Region in SUS 304 Stainless Steel)

  • 주원식;오세욱;조석수
    • 대한기계학회논문집
    • /
    • 제18권3호
    • /
    • pp.548-554
    • /
    • 1994
  • The high temperature fatigue crack growth behavior of SUS 304 stainless steel at $550^{\circ}C$ and $650^{\circ}C$ was investigated under various kinds of stress ratio and frequency in sinusoidal waveform on the basis of the non-linear fracture mechanics. The result arranging crack growth rate by modified J-integral J' showed influence of stress ratio and frequency. All the data obtained under the test at $550^{\circ}C$ were plotted within data band of da/dN-${\triangle}J_f$ relationship for cycle-dependent crack growth. On the basis of static creep and cycle-dependent data band; both time- and cycle-dependent crack growth behavior was observed under loading conditions at $650^{\circ}C$, but cycle-dependent crack growth behavior predominantly appeared and time-dependent crack growth behaviour was little observed under loading conditions at $550^{\circ}C$. Fractographic examinations for fracture surface indicated that the fracture mode was generally transgranular. The stripes were found on fracture surface and each stripe was accompanied by a crack tip blunting and an abrupt increase in the load-point displacement. The $J'_{an}$ had a validity in case of $650^{\circ}C, but scarcely had it in case of $550^{\circ}C$.

한국 화력 발전설비의 수명평가기준 개발 및 활용 (Development and Application of Life-Assessment Guidelines for Fossil-Fuel Power Plant Facilities in Korea)

  • 최우성;송기욱;김범신;현중섭;허재실
    • 대한기계학회논문집A
    • /
    • 제34권9호
    • /
    • pp.1265-1272
    • /
    • 2010
  • 최근 들어 화력발전소는 잦은 기동과 부하 변동 하에서 안정적인 운전 및 관리에 대한 요구가 높아지고 있다. 특히 터빈, 보일러와 같이 고온 고압의 조건에서 운전되는 발전 설비의 경우 크리프 및 피로 손상의 영향으로 설비의 수명이 감소하게 된다. 보다 안전한 발전소 운영을 위해 설비의 정확한 수명평가가 중요하며 현재까지 다양한 방법이 개발되어 적용되고 있다. 그러나 현재까지는 표준화된 가이드라인이나 절차 없이 정성적/준정량적 분석에 의해 주요 설비의 수명을 평가하고 있다. 본 연구에서는 크리프 및 피로 손상기구에 근거하여 국내 화력발전 주요 설비의 수명 소비율을 평가하는 표준화된 기준을 개발하였고 실제 설비에 적용하여 평가 기준의 활용성을 검증하였다. 본 기준은 2010 전력기술기준에 수록될 예정으로 수명평가의 정확성 향상과 수명관리 표준화에 기여할 것이다.

하중진폭이 작은 인장과대 하중의 균열성장 거동 (Crack Growth Behavior of Tensile Overload for Small Load Amplitude)

  • 유헌일
    • 한국생산제조학회지
    • /
    • 제7권2호
    • /
    • pp.54-61
    • /
    • 1998
  • This paper examines the crack growth behavior of 7075-T651 aluminum alloy for small tensile overload under high-low block loading condition. The cantilever beam type specimen with a chevron notch is used in this study. The crack growth and closure are investigated by compliance method. The applied initial stress ratios are R=-0.5 R=0.0 and R=0.25 Crack length, effective stress intensity factor range, ratio of effective stress intensity factor range and crack growth rate etc, are inspected with fracture mechanics estimate.

  • PDF

차량/궤도 상호작용해석을 통한 고속철도 콘크리트궤도 레일의 피로수명 예측 (The Fatigue Life Evaluation of Rail on the Concrete Track of High Speed Railway by Analysis of the Vehicle/Track Interaction)

  • 임형준;성덕룡;박용걸
    • 대한토목학회논문집
    • /
    • 제32권6D호
    • /
    • pp.663-671
    • /
    • 2012
  • 철도노선에 콘크리트궤도가 본격적으로 적용되고, 승차감 향상 및 고속화와 궤도유지보수비용 저감을 위해 장대레일의 수요가 급증하고 있다. 그러나 국내의 콘크리트궤도 현장 적용년수가 길지 않아 실제 현장에서 반복적인 열차하중을 받아 장대레일이 파단된 사례가 현재까지 없기 때문에 실제 현장 데이터를 이용하여 장대레일의 수명을 예측하고 교체주기를 산정하는 것은 어려움이 있다. 따라서 본 연구에서는 차량/궤도 상호작용해석을 통해 레일에서 발생하는 응력을 검토하여 그 해석결과 값에 대해 중회귀분석을 수행하여 운행속도와 표면요철에 따른 레일 휨응력 예측식을 도출하였다. 최종적으로 산정된 예측식을 이용하여 콘크리트궤도 장대레일의 피로수명을 예측하였다.

Development of dynamics simulation model for 3-point hitch of agricultural tractor during plow tillage

  • Mo A Son;Seung Yun Baek;Seung Min Baek;Hyeon Ho Jeon;Ryu Gap Lim;Yong Joo Kim
    • 농업과학연구
    • /
    • 제49권4호
    • /
    • pp.937-948
    • /
    • 2022
  • Agricultural operations are performed in uneven environments by attaching an implement on the 3-point hitch of a tractor. A high load is thus placed on the 3-point hitch, and fatigue and failure of the hitch may occur during agricultural operations. In this study, a dynamic simulation model was developed to predict the load occurring on the eyebolt of a 3-point hitch, which is the main damaged component. The simulation model was developed and validated using agricultural data as simulation input and validation data. The dynamics model was developed using the specifications of a 78 kW class tractor. A measurement system was constructed to measure the simulation input and validation data. The simulation model was validated using a traction load on an eye bolt, which was measured during plow tillage operation. The measurement results showed that the average traction load on the left and right lower link and the top link were 8,099.97, 4,943.06, and 636.11 N, respectively. The simulation results and the measured traction load on the left eyebolt were respectively 610.30 and 597.15 N. The simulation results and measured traction load on the left eyebolt were respectively 1,179.78, and 1,145.06 N. The error between the simulation and measurement data was roughly 2% on the left eyebolt and 3% on the right eyebolt.

헤디드 바와 강섬유로 보강된 Dapped End Beam의 구조 거동에 관한 실험적 연구 (Behavior of Reinforced Dapped End Beams with T-headed Bar and Steel Fibers)

  • 최진혁;이창훈;이주하;윤영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.49-52
    • /
    • 2004
  • In this studies, Dapped End Beams(DEB) having disturbed regions were designed by using strut tie model, and the main purpose of this paper is that whether T-headed bars and Steel fibers will be present or not. The ability of DEB with T-headed bars have a superior performance rather than others, such as improved ductility, larger energy adsorption and enhanced post-peak load carrying capability. The capacity of DEB with steel fibers also show increase of ductility, shear strength, fatigue strength and crack. Each DEB with both headed bars and steel fibers, headed bars, and steel fibers as a substitute reinforced steel in the disturbed regions and a DEB with only stirrup and tie reinforced steel were comparable. In contrast, the headed bar stirrups, the tie headed bars and the reinforced steel fibers did not lose their anchorage and hence were able to develop strain hardening and also served to delay buckling of the flexural compression steel. Excellent load-deflection predictions were obtained by increasing the tension stiffening effect to account for high load effects.

  • PDF

Load capacity simulation of an agricultural gear reducer by surface heat treatment

  • Lee, Pa-Ul;Chung, Sun-Ok;Choi, Chang-Hyun;Joo, Jai-Hwang;Rhee, Joong-Yong;Choi, Young-Soo;Ha, Jong-Woo;Park, Young-Jun;Hong, Sun-Jung;Kim, Yong-Joo
    • 농업과학연구
    • /
    • 제43권4호
    • /
    • pp.656-664
    • /
    • 2016
  • Gear reducers are widely used for various agricultural machinery applications such as greenhouses, tractors, and agricultural vehicles. However, thermal deformation and surface pitting at gear tooth flank frequently occur in gear reducers due to high torque. Thus, surface heat treatment of gears is required to improve wear and fatigue resistance. The objective of this study was to simulate the load capacity of the agricultural gear reducer. The simulation was performed for the following three surface heat treatment methods: untreated gears, nitriding heat treatment, and induction hardening method, those mostly used for agricultural gear reducers. The load capacity of the gear reducer was simulated using the safety factor, limit bending stress, and limit contact stress of the gear. The simulation of the load capacity was conducted using KISSsoft commercial software for gear analysis. The main results of simulation test were as follows: first, the nitriding heat treatment resulted in the highest safety factor for bending stress, which was increased about 77% from those of the untreated gears. Second, the induction hardening was the highest safety factor for contact stress, which was increased about 150% from those of the untreated gears. The safety factor for contact stress of the induction hardening was increased about 64% from those of the nitriding heat treatment. The study result suggested that the surface heat treatments could enhance load capacity and that the method of surface heat treatment should be determined based on simulation results for appropriate use scenarios.

인장하중에 따른 Carbon/Carbon복합재의 진동특성 (The Vibration Characteristic of Carbon-Carbon Composite Material due to Tensile Loading)

  • 오승규;곽이구;김홍건
    • 한국생산제조학회지
    • /
    • 제20권6호
    • /
    • pp.740-744
    • /
    • 2011
  • Carbon-carbon composite material is the reinforced carbon fiber. Because of its high strength, elasticity and the excellent heat-resisting property in high temperature, carbon-carbon composite material has been used in many fields such as aerospace and automotive industries, etc. Especially, aircraft brake discs used at aerospace can be cracked due to its fatigue and vibration under various loading condition. This research is focused on the influence of the vibration of carbon-carbon composite material by using accelerometer with impact hammer excitation. And the change of vibration mode will be known by applying tensile loading test.