• Title/Summary/Keyword: High Energy Pipeline

Search Result 60, Processing Time 0.025 seconds

The Study on the AC Interference of High Power Cable on Underground Gas Pipeline (전력케이블과 가스배관의 병행구간에 대한 교류부식 영향 검토 연구)

  • Bae, J.H.;Kim, D.K.;Ha, T.H.;Lee, H.G.;Kwak, B.M.;Lim, C.J.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.470-473
    • /
    • 2000
  • Because of the continuous growth of energy consumption, and also the tendency to site power lines and pipelines along the same routes, the close proximity of high voltage structures and metallic pipelines has become more and more frequent. Moreover, normal steady state and fault currents become higher as electric networks increase in size and power. Therefore, there has been and still is a growing concern (safety of people marking contact with pipeline, risk of damage to the pipeline coating, the metal and equipment connected to pipeline. especially cathodic protection system) about possible hazards resulting from the influence of high voltage power system on metallic structures(gas pipeline, oil pipeline and water pipeline etc.). Therefore, we analyze the interference problems when the gas pipeline is buried with power cable in the same submarine tunnel. This paper present the results of the study about interference mechanism, AC corrosion, limitation of safety voltage and analysis of indiction voltage.

  • PDF

An Assessment Pipe Damage Probability of High Pressure Underground Pipeline in Industrial Estate (산업단지 고압매설배관의 손상확률 평가)

  • Kim, jin-jun;Rhie, Kwang-Won;Choi, hun-ung;Choi, ji-hun
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.2
    • /
    • pp.9-16
    • /
    • 2019
  • The frequency of major accidents which has probability of occurrence at the high pressure underground pipeline of industrial estate such an Ulsan, Yeo-ju by the other construction such as an excavation work will be compared to city gas underground pipeline to derive the basic event by the FTA and present. Also, Observe and analyze the pipe damage impact factor such as an excavation frequency, patrol cycle. As a result, It contributes to the safety improvement of high pressure gas buried pipeline due to obtain importance and sensitivity of the pipe damge impact factors.

Computational Analysis of Structural Behavior of Subsea Pipelines with Local Corrosion (국부 부식을 가지는 심해저 파이프라인의 구조응답에 대한 전산 해석적 연구)

  • Choi, Kwang-Ho;Lee, Chi-Seung;Ryu, Dong-Man;Koo, Bon-Yong;Song, Joon-Kyu;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.100-110
    • /
    • 2015
  • To meet the increasing demand for energy around the world, offshore and subsea energy development is constantly being conducted. This trend is accompanied by an increasing demand for pipeline installation, which brings numerous problems, including those related to accessibility, high pressure, and corrosion. Among these, corrosion is a primary factor in pipeline fractures, and can cause severe environmental and industrial damage. Hence, accurate corrosion assessment for corroded pipelines is very important. For this reason, the present study investigated the mechanical behavior of an idealized corroded subsea pipeline with an internal/external pressure load using the commercial FEA code ABAQUS. Then, the analysis result was compared with corrosion assessment codes such as ASME B31G, DNV RP F101, ABS. Finally, a fitness-for-service assessment was conducted.

Trend and Review of Corrosion Resistant Alloy (CRA) for Offshore Pipeline Engineering (내식합금 (CRA) 동향 및 해양 파이프라인 설계 적용에 대한 고찰)

  • Yu, Su-Young;Choi, Han-Suk;Lee, Seung-Keon;Kim, Do-Kyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.85-92
    • /
    • 2014
  • Offshore fields are increasingly important for the development of offshore resources due to the growing energy needs. However, an offshore field for oil and gas production has difficult development conditions, e.g., high temperature, high pressure, sweet/sour compositions of fluids, etc. Corrosion is one of the biggest issues for offshore pipeline engineering. In this study, a Corrosion Resistant Alloy (CRA) pipe for corrosion prevention was investigated through its global demand and trends, and three types of CRA pipelines were introduced with detailed explanations. The usefulness of CRA was also evaluated in comparison to a carbon steel pipeline in terms of the structural strength, cost, and other factors. Offshore pipeline engineering, including mechanical design and verification of the results through an installation analysis based on numerical software, was performed for the carbon steel type and solid CRA type. The results obtained from this study will be useful data for CRA pipeline designers and researchers.

Numerical Analysis on Depressurization of High Pressure Carbon Dioxide Pipeline (고압 이산화탄소 파이프라인의 감압거동 특성에 관한 수치해석적 연구)

  • Huh, Cheol;Cho, Meang Ik;Kang, Seong Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.1
    • /
    • pp.52-61
    • /
    • 2016
  • To inject huge amount of $CO_2$ for CCS application, high pressure pipeline transport is accompanied. Rapid depressurization of $CO_2$ pipeline is required in case of transient processes such as accident and maintenance. In this study, numerical analysis on the depressurization of high pressure $CO_2$ pipeline was carried out. The prediction capability of the numerical model was evaluated by comparing the benchmark experiments. The numerical models well predicted the liquid-vapor two-phase depressurization. On the other hands, there were some limitations in predicting the temperature behavior during the supercritical, liquid phase and gaseous phase expansions.

Power Generation and Control System Using Differential Pressure of District Heating Pipeline in a Substation (지역난방 사용자기계실 내 열수송관 차압을 이용한 발전 및 제어 기술)

  • Kim, Kyung Min;Park, Sung Yong;Oh, Mun Sei
    • Journal of Energy Engineering
    • /
    • v.26 no.3
    • /
    • pp.90-96
    • /
    • 2017
  • When the hot water is supplied through the district heating (DH) pipeline, a pressure differential control valve (PDCV) protects the DH user equipment from the high pressure DH water and helps to supply DH water to long distance. It also controls the temperature and adjust the pressure in the main district heating pipeline. However, cavitation occurs in PDCV due to the use of high pressure DH water. It causes frequent failures and many problems. It also causes energy loss and complaints to both operators and users. In order to solve these problems, we will introduce the energy saving technology to replace the primary side PDCV with hydraulic turbine, convert the differential pressure into electricity, and utilize electricity as the power of the secondary side pump.

Elastic High-temperature Structural Analysis on the Small Scale PHE Prototype Considering the Pipeline Stiffness (배관 강성을 고려한 소형 공정열교환기 시제품에 대한 탄성 고온구조해석)

  • Song, Kee-nam;Kang, J-H;Hong, S-D;Park, H-Y
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.3
    • /
    • pp.48-53
    • /
    • 2011
  • A PHE (Process Heat Exchanger) is a key component required to transfer heat energy of $950^{\circ}C$ generated in a VHTR (Very High Temperature Reactor) to the chemical reaction that yields a large quantity of hydrogen. A small-scale PHE prototype made of Hastelloy-X is being tested in a small-scale gas loop at Korea Atomic Energy Research Institute. In this study, as a part of the evaluation on the high-temperature structural integrity of the small-scale PHE prototype, we carried out macroscopic high-temperature structural analysis of the small-scale PHE prototype under the gas loop test conditions considering the pipeline stiffness.

Effects of Rolling and Cooling Conditions on Microstructures and Mechanical Properties of High-Deformable Pipeline Steels (고변형능 라인파이프강의 미세조직과 기계적 특성에 미치는 압연 및 냉각 조건의 영향)

  • Lee, S.I.;Hwang, B.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.5
    • /
    • pp.235-241
    • /
    • 2014
  • Effects of rolling and cooling conditions on microstructures and mechanical properties of high-deformable pipeline steels were investigated in this study. Six kinds of pipeline steels were fabricated by varying rolling and cooling conditions, and their microstructures were analyzed by scanning electron microscopy, electron back-scattered diffraction, and transmission electron microscopy. Tensile and Charpy impact tests were conducted on the steels in order to examine the mechanical properties. The steels rolled in the two-phase region showed better low-temperature toughness than those in the single-phase region due to the larger amount of ferrites having high-angle boundaries, although they have lower strength and absorbed energy. The steel rolled in single-phase and finish-cooled at higher temperature showed a good combination of high strength and good low-temperature toughness as well as excellent deformability of the lowest yield ratio and the highest uniform elongation because of the presence of fine ferrite and a mixture of various low-temperature transformation phases.

Optimal Design of Submarine Pipeline for Intake and Discharge of Seawater Desalination Facilities (해수 담수화 설비의 취수 및 배출수 해저 배관 최적화 설계)

  • Choi, Gwangmin;Han, Inseop
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.599-609
    • /
    • 2017
  • Desalination plants have been recently constructed in many parts of the world due to water scarcity caused by population growth, industrialization and climate change. Most seawater desalination plants are designed with a submarine pipeline for intake and discharge. Submarine pipelines are installed directly on the bottom of the water body if the bottom is sandy and flat. Intake is located on a low-energy shoreline with minimal exposure to beach erosion, heavy storms, typhoons, tsunamis, or strong underwater currents. Typically, HDPE (High Density Polyethylene) pipes are used in such a configuration. Submarine pipelines cause many problems when they are not properly designed; HDPE pipelines can be floated or exposed to strong currents and wind or tidal action. This study examines the optimal design method for the trench depth of pipeline, analysis of on-bottom stability and dilution of the concentrate based on the desalination plant conducted at the Pacific coast of Peru, Chilca. As a result of this study, the submarine pipeline should be trenched at least below 1.8 m. The same direction of pipeline with the main wind is a key factor to achieve economic stability. The concentrate should be discharged as much as high position to yield high dilution rate.

A Study on the Safety Management of High Pressure Underground Pipeline in Industrial estate (산업단지 고압매설배관 안전관리 고찰)

  • Choi, Hyun-Woong;Chung, Se-Kwang;Kim, Jin-Jun
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.6
    • /
    • pp.30-38
    • /
    • 2017
  • Established in the 1960s, high pressure underground pipelines in Ulsan and Yeosu industrial estate are underground as toxic gas as well as combustible gas that is heavier than city gas and low combustion range. Especially, industrial pipelines occupy more than 20 years old pipes. In this way, the industrial estate pipeline was installed before the introduction of the supervision of construction, However, unlike the city gas pipeline, the pipeline is managed without any legal obligation. In this study, the safety management status of high pressure underground pipelines and urban gas underground pipelines in the industrial estate is analyzed and comparison of laws, extent of damage impact, using the pipe inspection model for pipe inspection of high pressure piping system with the existing piping system. it is intended to cuntribute to improving the safety of industrial estate are underground pipeline.