• Title/Summary/Keyword: High Energy Particles

Search Result 665, Processing Time 0.031 seconds

High-energy Photons and Particles in Space Environment

  • Ohno, Shin-ichi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.170-173
    • /
    • 2002
  • Space is full of energetic events emitting high-energy radiations which may be fatal to all living things unless protected. The present paper briefly describes high-energy photons and particles incident on Earth surface and their common properties toward living things. Role of radiation played in evolution of life and earth environment will be presented.

  • PDF

Experimental Studies on the Motion and Discharge Behavior of Free Conducting Wire Particle in DC GIL

  • Wang, Jian;Wang, Zhiyuan;Ni, Xiaoru;Liu, Sihua
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.858-864
    • /
    • 2017
  • This study aims to restrain free conducting wire-type particles which are commonly and dangerously existing within DC gas-insulated transmission lines. A realistic platform of a coaxial cylindrical electrode was established by using a high-speed camera and a partial discharge (PD) monitor to observe the motion, PD, and breakdown of these particles. The probabilities of standing or bouncing, which can be affected by the length of the particles, were also quantitatively examined. The corona images of the particles were recorded, and particle-triggered PD signals were monitored and extracted. Breakdown images were also obtained. The air-gap breakdown with the particles was subjected to mechanism analysis on the basis of stream theory. Results reveal that the lifting voltage of the wire particles is almost irrelevant to their length but is proportional to the square root of their radius. Short particles correspond to high bouncing probability. The intensity and frequency of PD and the micro-discharge gap increase as the length of the particles increases. The breakdown voltage decreases as the length of the particles decreases.

A Study of Dark Photon at the Electron-Positron Collider Experiments Using KISTI-5 Supercomputer

  • Park, Kihong;Cho, Kihyeon
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.55-63
    • /
    • 2021
  • The universe is well known to be consists of dark energy, dark matter and the standard model (SM) particles. The dark matter dominates the density of matter in the universe. The dark matter is thought to be linked with dark photon which are hypothetical hidden sector particles similar to photons in electromagnetism but potentially proposed as force carriers. Due to the extremely small cross-section of dark matter, a large amount of data is needed to be processed. Therefore, we need to optimize the central processing unit (CPU) time. In this work, using MadGraph5 as a simulation tool kit, we examined the CPU time, and cross-section of dark matter at the electron-positron collider considering three parameters including the center of mass energy, dark photon mass, and coupling constant. The signal process pertained to a dark photon, which couples only to heavy leptons. We only dealt with the case of dark photon decaying into two muons. We used the simplified model which covers dark matter particles and dark photon particles as well as the SM particles. To compare the CPU time of simulation, one or more cores of the KISTI-5 supercomputer of Nurion Knights Landing and Skylake and a local Linux machine were used. Our results can help optimize high-energy physics software through high-performance computing and enable the users to incorporate parallel processing.

Computer Simulation for Microstructure Development in Porous Sintered Compacts (다공질 소결체의 조직형성에 관한 컴퓨터 시뮬레이션)

  • Shin, Soon-Ki;Matsubara, Hideaki
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.4 s.287
    • /
    • pp.213-219
    • /
    • 2006
  • A Monte Carlo simulation based on Potts model in a three dimensional lattice was studied to analyze and design microstructures in porous sintered compacts such as porosity, pore size, grain (particle) size and contiguity of grains. The effect of surface energy of particles and the content of additional fine particles to coarse particles on microstructure development were examined to obtain fundamentals for material design in porous materials. It has been found that the larger surface energy enhances sintering (necking) of particles and increases contiguity and surface energy does not change pore size and grain size. The addition of fine particles also enhances sintering of particles and increases contiguity, but it has an effect on increment of pore size and grain size. Such a simulation technique can give us important information or wisdom for design of porous materials, e.g., material system with high surface energy and fine particle audition are available for higher strength and larger porosity in porous sintered compacts with applications in an automobile.

Particle Attrition Characteristics in a Bubbling Fluidized Bed Under High Temperature and High Pressure Conditions (고온 고압 조건하의 기포유동층 반응기에서의 입자 마모특성)

  • Moon, Jong-Ho;Lee, Dong-Ho;Ryu, Ho-Jung;Park, Young Cheol;Lee, Jong-Seop;Min, Byoung-Moo;Jin, Gyoung Tae
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.359-366
    • /
    • 2014
  • Attrition characteristics of PKM1-SU particles, $CO_2$ absorbents for pre-combustion $CO_2$ capture process, and FCC particles, catalytic particles for hydro cracking of crude oil, were investigated at high temperature and high pressure conditions. Particle attrition tests were executed at various kinds of temperature ($0-400^{\circ}C$) and pressure (0-20 bar) conditions in a cylinder type bubbling fluidized bed with 15.1 cm diameter, 120 cm height and 1 mm orifice-sparger tube. Attrited particles before and after tests were analyzed by BET, optical microscopy, and particle size analyzer. Effects of bed material height (solid inventory) and steam injection were also verified by using ASTM D5757-95, conventional attrition test method.

Template-free Hydrothermal Synthesis of High Phase Purity Mordenite Zeolite Particles Using Natural Zeolite Seed for Zeolite Membrane Preparation (제올라이트 분리막 제조를 위한 유기주형 없는 고순도 모데나이트 제올라이트 입자 수열합성에 관한 연구)

  • Lee, Du-Hyoung;Alam, Syed Fakhar;Lee, Hye-Rheon;Sharma, Pankaj;Cho, Churl-Hee;Han, Moon-Hee
    • Membrane Journal
    • /
    • v.26 no.5
    • /
    • pp.381-390
    • /
    • 2016
  • In this study, the natural mordenite (MOR) zeolite seeds were used for the synthesis of high purity mordenite crystals. The effect of seed concentration and crystallization time on the phase purity and surface morphology of MOR crystals has also been reported. The diffraction, elemental and scanning analysis of MOR zeolite particles obtained from 100 g hydrothermal solution batch containing 3 g natural seed, hydrothermally treated at $140^{\circ}C$ for 72 h reveal the high phase-purity of as-synthesized sample having crystals of uniform size ($1-2{\mu}m$). Moreover, high seed concentration leads to the production of mesoporous MOR particles composed of needle shape primary nano crystallites. The gases adsorption performances of as-synthesized MOR particle were carried out at $25^{\circ}C$ and 0-1 bar. Surprisingly, MOR particles show good adsorption potential for $CO_2$ (97.19 mg/g) compared to other gases. Thus it confirms that high purity MOR particles can be synthesized without using any organic template which gives an advantage of separation performance at lower price.

Natural Gas Combustion Characteristics of Mass Produced Oxygen Carrier Particles for Chemical-looping Combustor in a Batch Type Fluidized Bed Reactor (회분식 유동층 반응기에서 매체순환식 가스연소기용 대량생산 산소공여입자들의 천연가스 연소특성)

  • Ryu, Ho-Jung;Kim, Kyung-Su;Park, Yeong-Seong;Park, Moon-Hee
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.2
    • /
    • pp.151-160
    • /
    • 2009
  • Natural gas combustion characteristics of mass produced oxygen carrier particles were investigated in a batch type bubbling fluidized bed reactor. Five particles, NiO/bentonite, OCN601-650, OCN702-1100, OCN703-950, OCN703-1100 were used as oxygen carrier particles. Natural gas and air were used as reactants for reduction and oxidation, respectively. During reduction reaction, high fuel conversion and high $CO_2$ selectivity were achieved for most of oxygen carriers. During oxidation, NO emission was very low. These results indicate that inherent $CO_2$ separation and low NOx combustion are feasible for the natural gas fueled chemical-looping combustion system. Among the five oxygen carriers, OCN703-1100 particle was selected as the best candidate for demonstration of long-term operation in large-scale chemical-looping combustor from the viewpoints of fuel conversion, $CO_2$ selectivity, $CH_4$ concentration, and CO concentration.

MICROSTRUCTURES AND MECHANICAL PROPERTIES OF ODS FERRITIC STAINLESS STEELS FOR HIGH TEMPERATURE SERVICE APPLICATIONS

  • SANGHOON NOH;SUK HOON KANG;TAE KYU KIM
    • Archives of Metallurgy and Materials
    • /
    • v.64 no.3
    • /
    • pp.921-924
    • /
    • 2019
  • In this study, ODS ferritic stainless steels were fabricated using a commercial alloy powder, and their microstructures and mechanical properties were studied to develop the advanced structural materials for high temperature service applications. Mechanical alloying and uniaxial hot pressing processes were employed to produce the ODS ferritic stainless steels. It was revealed that oxide particles in the ODS stainless steels were composed of Y-Si-O, Y-Ti-Si-O, and Y-Hf-Si-O complex oxides were observed depending on minor alloying elements, Ti and Hf. The ODS ferritic stainless steel with a Hf addition presented ultra-fine grains with uniform distributions of fine complex oxide particles which located in grains and on the grain boundaries. These favorable microstructures led to superior tensile properties than commercial stainless steel and ODS ferritic steel with Ti addition at elevated temperature.

Development of High Energy Particle Detector for the Study of Space Radiation Storm

  • Jo, Gyeong-Bok;Sohn, Jongdae;Choi, Cheong Rim;Yi, Yu;Min, Kyoung-Wook;Kang, Suk-Bin;Na, Go Woon;Shin, Goo-Hwan
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.277-283
    • /
    • 2014
  • Next Generation Small Satellite-1 (NEXTSat-1) is scheduled to launch in 2017 and Instruments for the Study of Space Storm (ISSS) is planned to be onboard the NEXTSat-1. High Energy Particle Detector (HEPD) is one of the equipment comprising ISSS and the main objective of HEPD is to measure the high energy particles streaming into the Earth radiation belt during the event of a space storm, especially, electrons and protons, to obtain the flux information of those particles. For the design of HEPD, the Geometrical Factor was calculated to be 0.05 to be consistent with the targets of measurement and the structure of telescope with field of view of $33.4^{\circ}$ was designed using this factor. In order to decide the thickness of the detector sensor and the classification of the detection channels, a simulation was performed using GEANT4. Based on the simulation results, two silicon detectors with 1 mm thickness were selected and the aluminum foil of 0.05 mm is placed right in front of the silicon detectors to shield low energy particles. The detection channels are divided into an electron channel and two proton channels based on the measured LET of the particle. If the measured LET is less than 0.8 MeV, the particle belongs to the electron channel, otherwise it belongs to proton channels. HEPD is installed in the direction of $0^{\circ}$, $45^{\circ}$, $90^{\circ}$ against the along-track of a satellite to enable the efficient measurement of high energy particles. HEPD detects electrons with the energy of 0.1 MeV to several MeV and protons with the energy of more than a few MeV. Thus, the study on the dynamic mechanism of these particles in the Earth radiation belt will be performed.

Development of high-efficiency heating system using humidifying particles (가습 입자를 활용한 고효율 난방 시스템 개발)

  • Lee, Jeong-Won;Hong, Kyung-Bo
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.17-24
    • /
    • 2020
  • Products for heating indoors in low temperature and dry winter are largely divided into products using fossil fuels and products using electricity. The fossil fuels can warm the entire space by convection, but there is a high risk of fire and the frequent ventilation due to the increase in carbon monoxide and carbon dioxide. Heaters using electricity are mainly used because they are convenient to use and are cheap. However, these products can not efficiently warm the air because they use radiation energy. In other words, only the front part exposed to the heater is warm, and the rear part has no heating effect at all. Also, because it emits a large amount of light, fatigue of the eyes is very high. Another problem is that when using electric heaters, the room tends to be dry by high heat. Indoor humidity maintenance is a very important factor in the prevention and treatment of respiratory diseases. Especially, it is essential for health care for infants, bronchial organs and people with weak respiratory because humidity is low in winter. In this study, we conducted a study to develop a product that can improve heating efficiency while maintaining proper indoor humidity by combining heat energy and moisture particles. The concept of humidification and heating at the same time, moisture particles generated in the humidifier pass through the heater, include thermal energy, and the moisture particles with thermal energy are diffused into the space by forced convection, thereby warming the entire space. In addition, the heating time is shortened as the feeling temperature is increased with the high relative humidity, and this has the effect that the heating cost in winter is reduced.