• 제목/요약/키워드: High Energetic Materials

검색결과 78건 처리시간 0.022초

테트라졸을 포함한 에너지 함유 공중합체의 합성 (Synthesis of Tetrazole-containing Energetic Copolymers)

  • 신정아
    • 한국군사과학기술학회지
    • /
    • 제14권4호
    • /
    • pp.726-731
    • /
    • 2011
  • Polymers containing tetrazole groups are very attractive as energetic materials. Copolymer having tetrazole groups could be obtained by 3-steps from commercially available epichlorohydrin. These methods provide a new synthetic pathway to construct polymers containing tetrazole groups from non-energetic polynitrile compounds. These polymers are expected to be good candidates for green and high energetic materials.

에너제틱 금속입자 제조 및 안정화 기술 (Preparation of Energetic Metal Particles and Their Stabilization)

  • 이혜문;김경태;양상선;유지훈;김용진
    • 한국입자에어로졸학회지
    • /
    • 제9권3호
    • /
    • pp.173-185
    • /
    • 2013
  • Oxidations of metal generate large quantity of thermal and light energies but no toxic pollutants, so that metals with high calorific values, such as beryllium, boron, aluminum, magnesium, and lithium, are possible to be used as clean fuels instead of fossil fuels. However, they are so explosive due to very high oxidation rates that they should be stabilized by their surface passivation with oxides, organics and inorganics. For reasonable use of energetic metal particles as solid fuel, therefore, some detail information, such as thermal properties, preparation and passivation methods, and application area, of the energetic metals is introduced in this manuscript.

Innovative Modeling and Simulation of Reacting Flow with Complex Confined Boundaries

  • Kim, Ki-Hong;Yoh, Jai-Ick
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.311-319
    • /
    • 2008
  • We present an innovative method of multi physics application involving energetic materials. Energetic materials are related to reacting flows in extreme environments such as fires and explosions. They typically involve high pressure, high temperature, strong shock waves and high strain rate deformation of metals. We use an Eulerian methodology to address these problems. Our approach is naturally free from large deformation of materials that make it suitable for high strain rate multi-material interacting problems. Furthermore we eliminate the possible interface smearing by using the level sets. We heave devised a new level set based tracking framework that can elegantly handle large gradients typically found in reacting gases and metals. We show several work-in-progress application of our integrated framework.

  • PDF

고에너지 물질 연소를 기반으로 한 Multi Physics Modeling (How to Prepare the Manuscript for Submission to the Proceedings of KSPE Conference)

  • 김기홍;여재익
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.238-241
    • /
    • 2007
  • We present an innovative method of multi-physics application involving energetic materials. Energetic materials are related to reacting flows in extreme environments such as fires and explosions. They typically involve high pressure, hish temperature, strong non-linear shock waves, and high strain rate deformation of metals. We use an Eulerian methodology to address these problems. Our approach is naturally free from large deformation of materials that makes it suitable for high strain-rate multi-material interaction problems. Furthermore we eliminate the possible interface smearing by using the level sets. We have devised a new level set based tracking framework that can elegantly handle large gradients typically found in reacting gases and metals. We show several work-in-progress applications of our algorithm including the Taylor impact test, explosive venting and additional confined explosion problems of modem interest.

  • PDF

Quantum-chemical Investigation of Substituted s-Tetrazine Derivatives as Energetic Materials

  • Ghule, Vikas D.;Sarangapani, Radhakrishnan;Jadhav, Pandurang. M.;Tewari, Surya. P.
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권2호
    • /
    • pp.564-570
    • /
    • 2012
  • s-Tetrazine is the essential candidate of many energetic compounds due to its high nitrogen content, enthalpy of formation and thermal stability. The present study explores the design of s-tetrazine derivatives in which different $-NO_2$, $-NH_2$ and $-N_3$ substituted azoles are attached to the tetrazine ring via C-N linkage. The density functional theory (DFT) is used to predict the geometries, heats of formation (HOFs) and other energetic properties. The predicted results show that azide group plays a very important role in increasing HOF values of the s-tetrazine derivatives. The densities for designed molecules were predicted by using the crystal packing calculations. The introduction of $-NO_2$ group improves the density as compared to $-N_3$, and $-NH_2$ groups and hence the detonation performance. Bond dissociation energy analysis and insensitivity correlations revealed that amino derivatives are better candidates considering insensitivity and stability.

Optical and Thermodynamic Modeling of the Interaction Between Long-range High-power Laser and Energetic Materials

  • Kisung Park;Soonhwi Hwang;Hwanseok Yang;Chul Hyun;Jai-ick Yoh
    • Current Optics and Photonics
    • /
    • 제8권2호
    • /
    • pp.138-150
    • /
    • 2024
  • This study is essential for advancing our knowledge about the interaction between long-range high-power lasers and energetic materials, with a particular emphasis on understanding the response of a 155-mm shell under various surface irradiations, taking into account external factors such as atmospheric disturbances. The analysis addresses known limitations in understanding the use of non-realistic targets and the negligence of ambient conditions. The model employs the three-dimensional level-set method, computer-aided design (CAD)-based target design, and a message-passing interface (MPI) parallelization scheme that enables rapid calculations of the complex chemical reactions of the irradiated high explosives. Important outcomes from interaction modeling include the accurate prediction of the initiation time of ignition, transient pressure, and temperature responses with the location of the initial hot spot within the shell, and the relative magnitude of noise with and without the presence of physical ambient disturbances. The initiation time of combustion was increased by approximately a factor of two with atmospheric disturbance considered, while slower heating of the target resulted in an average temperature rise of approximately 650 K and average pressure increase of approximately 1 GPa compared to the no ambient disturbance condition. The results provide an understanding of the interaction between the high-power laser and energetic target at a long distance in an atmospheric condition.

Materials and Electrochemistry: Present and Future Battery

  • Paul, Subir
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권2호
    • /
    • pp.115-131
    • /
    • 2016
  • Though battery chemistry and technology had been developed for over a hundred years back, increase in demand for storage energy, in the computer accessories, cell phones, automobile industries for future battery car and uninterrupted power supply, has made, the development of existing and new battery, as an emerging areas of research. With innovation of high energetic inexpensive Nano structure materials, a more energy efficient battery with lower cost can be competitive with the present primary and rechargeable batteries. Materials electrochemistry of electrode materials, their synthesis and testing have been explained in the present paper to find new high efficient battery materials. The paper discusses fundamental of electrochemistry in finding true cell potential, overvoltages, current, specific energy of various combinations of anode-cathode system. It also describes of finding the performance of new electrode materials by various experiments viz. i. Cyclic Voltammetry ii. Chronoamperometry iii. Potentiodynamic Polarization iv. Electrochemical Impedance Spectroscopy (EIS). Research works of different battery materials scientists are discussed for the development of existing battery materials and new nano materials for high energetic electrodes. Problems and prospects of a few promising future batteries are explained.

폴리나이트로젠 에너지물질 (Polynigrogen Energetic Materials)

  • 이준웅
    • 한국군사과학기술학회지
    • /
    • 제19권3호
    • /
    • pp.319-329
    • /
    • 2016
  • Current research trends of prediction of possible structures, synthesis and explosive characteristics of polynitrogen molecules(PNs) are reviewed. Theoretically PNs are composed only of nitrogen atoms, in which N-N bonds are either single or double bonds, and thus when these molecules decompose, release of enormous energy is accompanied. From the middle of 20th century energetic material chemists have been seeking possible structures and the methods of synthesis of these new materials. As a results, from $N_4$ to $N_{60}$ together with their ions are predicted, and experimental chemists have been trying to synthesize these materials with a few success, including the famous ${N_5}^+$ ion in 1999. Although experimental successes are very rare beyond $N_5$ until today, the author believes that renovative ideas together with sincere efforts will bring someday next generation of high energy materials such as nitrogen fullerene($N_{60}$) in reality.

INVESTIGATION OF ENERGETIC DEPOSITION OF Au/Au (001) THIN FILMS BY COMPUTER SIMULATION

  • Zhang, Q. Y.;Pan, Z. Y.;Zhao, G. O.
    • 한국진공학회지
    • /
    • 제7권s1호
    • /
    • pp.183-189
    • /
    • 1998
  • A new computer simulation method for film growth, the kinetic Monte Carlo simulation in combination with the results obtained from molecular dynamics simulation for the transient process induced by deposited atoms, was developed. The behavior of energetic atom in Au/Au(100) thin film deposition was investigated by the method. The atomistic mechanism of energetic atom deposition that led to the smoothness enhancement and the relationship between the role of transient process and film growth mechanism were discussed. We found that energetic atoms cannot affect the film growth mode in layer-by-layer at high temperature. However, at temperature of film growth in 3-dimensional mode and in quasi-two-dimensional mode, energetic atoms can enhance the smoothness of film surface. The enhancement of smoothness is caused by the transient mobility of energetic atoms and the suppression for the formation of 3-dimensional islands.

  • PDF

자기조립법을 이용한 고에너지물질의 표면개질 연구 (Surface Modification of High Energetic Materials by Molecular Self-assembly)

  • 김자영;정원복;신채호;김진석;이근득;이기봉
    • 한국추진공학회지
    • /
    • 제20권2호
    • /
    • pp.18-23
    • /
    • 2016
  • 유기 분자의 자기조립 다분자막은 기질의 표면에서 전자기적인 상호작용을 통해 자발적으로 형성된다. 본 연구에서는 이 기술을 응용하여 고에너지물질의 안전성과 취급용이성이 향상됨을 입증하였다. 최근 다양한 연구에서 고에너지물질 결정 내부의 결함은 물질의 안전성을 저하시키는 요인이므로, 결정 입자의 크기를 감소시키는 연구가 중요시되고 있다. 이에 따라, 결정화 방법을 통해 제조된 나노 수준의 고에너지물질을 사용하였으며, 자기조립 다분자막 기술을 응용하여 물질의 안전성을 향상시켰다. 입도/표면전하/마찰감도/정전기 전하 등을 측정하여 표면개질 여부를 확인하였다.