• 제목/요약/키워드: High Dimensional Data

검색결과 1,553건 처리시간 0.029초

고차원 범주형 자료를 위한 비지도 연관성 기반 범주형 변수 선택 방법 (Association-based Unsupervised Feature Selection for High-dimensional Categorical Data)

  • 이창기;정욱
    • 품질경영학회지
    • /
    • 제47권3호
    • /
    • pp.537-552
    • /
    • 2019
  • Purpose: The development of information technology makes it easy to utilize high-dimensional categorical data. In this regard, the purpose of this study is to propose a novel method to select the proper categorical variables in high-dimensional categorical data. Methods: The proposed feature selection method consists of three steps: (1) The first step defines the goodness-to-pick measure. In this paper, a categorical variable is relevant if it has relationships among other variables. According to the above definition of relevant variables, the goodness-to-pick measure calculates the normalized conditional entropy with other variables. (2) The second step finds the relevant feature subset from the original variables set. This step decides whether a variable is relevant or not. (3) The third step eliminates redundancy variables from the relevant feature subset. Results: Our experimental results showed that the proposed feature selection method generally yielded better classification performance than without feature selection in high-dimensional categorical data, especially as the number of irrelevant categorical variables increase. Besides, as the number of irrelevant categorical variables that have imbalanced categorical values is increasing, the difference in accuracy between the proposed method and the existing methods being compared increases. Conclusion: According to experimental results, we confirmed that the proposed method makes it possible to consistently produce high classification accuracy rates in high-dimensional categorical data. Therefore, the proposed method is promising to be used effectively in high-dimensional situation.

Comparison of Lasso Type Estimators for High-Dimensional Data

  • Kim, Jaehee
    • Communications for Statistical Applications and Methods
    • /
    • 제21권4호
    • /
    • pp.349-361
    • /
    • 2014
  • This paper compares of lasso type estimators in various high-dimensional data situations with sparse parameters. Lasso, adaptive lasso, fused lasso and elastic net as lasso type estimators and ridge estimator are compared via simulation in linear models with correlated and uncorrelated covariates and binary regression models with correlated covariates and discrete covariates. Each method is shown to have advantages with different penalty conditions according to sparsity patterns of regression parameters. We applied the lasso type methods to Arabidopsis microarray gene expression data to find the strongly significant genes to distinguish two groups.

고차원 벡터 데이터 색인을 위한 시그니쳐-기반 Hybrid Spill-Tree의 설계 및 성능평가 (Design and Performance Analysis of Signature-Based Hybrid Spill-Tree for Indexing High Dimensional Vector Data)

  • 이현조;홍승태;나소라;장유진;장재우;심춘보
    • 인터넷정보학회논문지
    • /
    • 제10권6호
    • /
    • pp.173-189
    • /
    • 2009
  • 최근 UCC를 중심으로 동영상 데이터에 대해 사람들의 관심이 증가하고 있다. 따라서 동영상 데이터의 내용-기반 검색을 지원하는 효율적인 색인 기법이 요구된다. 그러나 Hybrid Spill-Tree를 제외한 대부분의 색인 기법들은 대용량의 고차원 데이터를 다루는데 비효율적이다. 본 논문에서는 동영상 데이터의 내용-기반 검색을 지원하기 위한 효율적인 고차원 색인 기법을 제안한다. 제안하는 고차원 색인 기법은 기존 Hybrid Spill-Tree을 기반으로 새롭게 제안하는 클러스터링 방법과 시그니쳐를 이용한 데이터 저장 방법을 결합하여 확장된 색인 기법이다. 또한 제안하는 시그니쳐-기반 고차원 색인 기법이 기존 M-Tree 및 Hybrid Spill-Tree에 비해 성능이 우수함을 보인다.

  • PDF

INVITED PAPER MULTIVARIATE ANALYSIS FOR THE CASE WHEN THE DIMENSION IS LARGE COMPARED TO THE SAMPLE SIZE

  • Fujikoshi, Yasunori
    • Journal of the Korean Statistical Society
    • /
    • 제33권1호
    • /
    • pp.1-24
    • /
    • 2004
  • This paper is concerned with statistical methods for multivariate data when the number p of variables is large compared to the sample size n. Such data appear typically in analysis of DNA microarrays, curve data, financial data, etc. However, there is little statistical theory for high dimensional data. On the other hand, there are some asymptotic results under the assumption that both and p tend to $\infty$, in some ratio p/n ${\rightarrow}$c. The results suggest that the new asymptotic results are more useful and insightful than the classical large sample asymptotics. The main purpose of this paper is to review some asymptotic results for high dimensional statistics as well as classical statistics under a high dimensional asymptotic framework.

Applications of response dimension reduction in large p-small n problems

  • Minjee Kim;Jae Keun Yoo
    • Communications for Statistical Applications and Methods
    • /
    • 제31권2호
    • /
    • pp.191-202
    • /
    • 2024
  • The goal of this paper is to show how multivariate regression analysis with high-dimensional responses is facilitated by the response dimension reduction. Multivariate regression, characterized by multi-dimensional response variables, is increasingly prevalent across diverse fields such as repeated measures, longitudinal studies, and functional data analysis. One of the key challenges in analyzing such data is managing the response dimensions, which can complicate the analysis due to an exponential increase in the number of parameters. Although response dimension reduction methods are developed, there is no practically useful illustration for various types of data such as so-called large p-small n data. This paper aims to fill this gap by showcasing how response dimension reduction can enhance the analysis of high-dimensional response data, thereby providing significant assistance to statistical practitioners and contributing to advancements in multiple scientific domains.

고차원 데이터에서 One-class SVM과 Spectral Clustering을 이용한 이진 예측 이상치 탐지 방법 (A Binary Prediction Method for Outlier Detection using One-class SVM and Spectral Clustering in High Dimensional Data)

  • 박정희
    • 한국멀티미디어학회논문지
    • /
    • 제25권6호
    • /
    • pp.886-893
    • /
    • 2022
  • Outlier detection refers to the task of detecting data that deviate significantly from the normal data distribution. Most outlier detection methods compute an outlier score which indicates the degree to which a data sample deviates from normal. However, setting a threshold for an outlier score to determine if a data sample is outlier or normal is not trivial. In this paper, we propose a binary prediction method for outlier detection based on spectral clustering and one-class SVM ensemble. Given training data consisting of normal data samples, a clustering method is performed to find clusters in the training data, and the ensemble of one-class SVM models trained on each cluster finds the boundaries of the normal data. We show how to obtain a threshold for transforming outlier scores computed from the ensemble of one-class SVM models into binary predictive values. Experimental results with high dimensional text data show that the proposed method can be effectively applied to high dimensional data, especially when the normal training data consists of different shapes and densities of clusters.

데이터 마이닝을 위한 고차원 클러스터링 기법에 관한 비교 분석 연구 (A Comparison and Analysis on High-Dimensional Clustering Techniques for Data Mining)

  • 김홍일;이혜명
    • 한국컴퓨터산업학회논문지
    • /
    • 제4권12호
    • /
    • pp.887-900
    • /
    • 2003
  • 데이터베이스의 많은 응용분야에서 대용량 고차원 데이터의 클러스터링을 요구하고 있다. 이에 따라 클러스터링 알고리즘에 대한 많은 연구가 이루어지고 있으나 기존의 알고리즘들은 “차원의 저주”에 기인하여 고차원 공간에서 효과적 및 효율적으로 수행하지 못하는 경향이 있다. 더욱이, 고차원 데이터는 상당한 양의 잡음 데이터를 포함하고 있으므로 알고리즘의 효과성 문제를 야기한다. 그러므로 고차원 데이터의 구조와 다양한 특성을 지원하는 적합한 클러스터링 알고리즘이 개발되어야 한다. 본 논문에서는 지금까지 연구된 고차원 클러스터링 기법을 조사한 후, 각 기법의 장단점과 적합한 응용 분야에 대한 비교 및 분석을 통하여 분류한다. 특히 본 논문에서는 최근의 연구를 통하여 개발한 점진적 프로젝션 기반의 클러스터링 알고리즘인 CLIP의 성능을 기존의 알고리즘과 비교 분석함으로써 그 효율성 및 효과성을 입증한다. 이러한 알리즘들의 소개 및 분류를 통하여 향후의 더욱 향상된 클러스터링 알고리즘 개발에 기반이 되고자 한다.

  • PDF

Enhanced Locality Sensitive Clustering in High Dimensional Space

  • Chen, Gang;Gao, Hao-Lin;Li, Bi-Cheng;Hu, Guo-En
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권3호
    • /
    • pp.125-129
    • /
    • 2014
  • A dataset can be clustered by merging the bucket indices that come from the random projection of locality sensitive hashing functions. It should be noted that for this to work the merging interval must be calculated first. To improve the feasibility of large scale data clustering in high dimensional space we propose an enhanced Locality Sensitive Hashing Clustering Method. Firstly, multiple hashing functions are generated. Secondly, data points are projected to bucket indices. Thirdly, bucket indices are clustered to get class labels. Experimental results showed that on synthetic datasets this method achieves high accuracy at much improved cluster speeds. These attributes make it well suited to clustering data in high dimensional space.

고차원자료에서의 다중검정의 활용 (Multiple testing and its applications in high-dimension)

  • 장원철
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권5호
    • /
    • pp.1063-1076
    • /
    • 2013
  • 현대 과학기술의 발전으로 빅데이터의 시대가 도래하였다, 이러한 빅데이터는 여러가지 과학적 문제에 대한 해답을 제공하지만 반면에 이로 인해 새로운 도전에 직면하고 있다. 마이크로어레이 자료와 같은 고차원자료는 이러한 빅데이터에서 흔히 볼 수 있는 유형중의 하나이다. 본 논문에서는 고차원 자료분석에 많이 쓰이고 있는 대역검정과 동시검정, 그리고 이의 응용에 대한 소개를 한다.

고차원 데이터 처리를 위한 SVM기반의 클러스터링 기법 (SVM based Clustering Technique for Processing High Dimensional Data)

  • 김만선;이상용
    • 한국지능시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.816-820
    • /
    • 2004
  • 클러스터링은 데이터 집합을 유사한 데이터 개체들의 클러스터들로 분할하여 데이터 속에 존재하는 의미 있는 정보를 얻는 과정이다. 클러스터링의 주요 쟁점은 고차원 데이터를 효율적으로 클러스터링하는 것과 최적화 문제를 해결하는 것이다. 본 논문에서는 SVM(Support Vector Machines)기반의 새로운 유사도 측정법과 효율적으로 클러스터의 개수를 생성하는 방법을 제안한다. 고차원의 데이터는 커널 함수를 이용해 Feature Space로 매핑시킨 후 이웃하는 클러스터와의 유사도를 측정한다. 이미 생성된 클러스터들은 측정된 유사도 값과 Δd 임계값에 의해서 원하는 클러스터의 개수를 얻을 수 있다. 제안된 방법을 검증하기 위하여 6개의 UCI Machine Learning Repository의 데이터를 사용한 결과, 제시된 클러스터의 개수와 기존의 연구와 비교하여 향상된 응집도를 얻을 수 있었다.