• Title/Summary/Keyword: High Density

Search Result 13,219, Processing Time 0.039 seconds

The Investigation of COD Treatment and Energy Consumption of Urban Wastewater by a Continuous Electrocoagulation System

  • DEDE SAGSOZ, Yesim;YILMAZ, Alper Erdem;EKMEKYAPAR TORUN, Fatma;KOCADAGISTAN, Beyhan;KUL, Sinan
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.261-268
    • /
    • 2022
  • In this study, electrochemical treatment of urban wastewater with electrical conductivity of 1000 μS cm-1 and chemical oxygen demand of 250 mg L-1 was investigated using the variables of initial pH value, current density and flow rate. Electrocoagulation was used, in which aluminum and stainless steel were selected, as the electrochemical treatment process. The electrocoagulation process was operated in continuous mode. The data obtained in experimental studies show that the best COD removal efficiency occurred in experiments where the initial pH value was 6. The increase in current density from 5 A to 15 A decreased the removal efficiency from 79 to 67%. The increase in flow rate under constant current density also reduced the efficiency of removal as expected. In experiments in which current density and flow rate were examined together, the increase in flow rate allowed the application of higher current densities. This situation led to considerable reductions in energy consumption values, even if the COD removal efficiency did not significantly increase. The high COD removal obtained with the use of high flow rate and high current density indicates that the electrocoagulation process can be used for high flow rate municipal wastewater treatment.

High Power Density, High Frequency, and High Voltage Pulse Transformer

  • Kim, S.C.;Jeong, S.H.;Nam, S.H.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.4
    • /
    • pp.180-184
    • /
    • 2001
  • The high operation frequency mainly reduces transformer volume in the power supply. A high frequency and high voltage pulse transformer is designed, fabricated, and tested. Switching frequency of the transformer is 100 kHz. Input and output voltages of the transformer are 250 V and 4 kV, respectively. Normal operation power of the transformer is 3 kW. Maximum volume of the transformer is 400 $cm^3$. The power density is thus 7.5 W/$cm^3$. The transformer will be installed in a metal box that has nominal operation temperature of 85 degree centigrade. The transformer and other high voltage components in the box will be molded with Silicon RTV(Room Temperature Vulcaniza) that has a very low thermal conductivity. Procedure of design and test results are discussed. Analytical as well as experimental results of varous paramters such as transformer loss, leakage inductance, distributed capacitance are also discussed. In addition, thermal analysis results from ANSYS code for three different operation conditions are discussed.

  • PDF

The effects of bone density and crestal cortical bone thickness on micromotion and peri-implant bone strain distribution in an immediately loaded implant: a nonlinear finite element analysis

  • Sugiura, Tsutomu;Yamamoto, Kazuhiko;Horita, Satoshi;Murakami, Kazuhiro;Tsutsumi, Sadami;Kirita, Tadaaki
    • Journal of Periodontal and Implant Science
    • /
    • v.46 no.3
    • /
    • pp.152-165
    • /
    • 2016
  • Purpose: This study investigated the effects of bone density and crestal cortical bone thickness at the implant-placement site on micromotion (relative displacement between the implant and bone) and the peri-implant bone strain distribution under immediate-loading conditions. Methods: A three-dimensional finite element model of the posterior mandible with an implant was constructed. Various bone parameters were simulated, including low or high cancellous bone density, low or high crestal cortical bone density, and crestal cortical bone thicknesses ranging from 0.5 to 2.5 mm. Delayed- and immediate-loading conditions were simulated. A buccolingual oblique load of 200 N was applied to the top of the abutment. Results: The maximum extent of micromotion was approximately $100{\mu}m$ in the low-density cancellous bone models, whereas it was under $30{\mu}m$ in the high-density cancellous bone models. Crestal cortical bone thickness significantly affected the maximum micromotion in the low-density cancellous bone models. The minimum principal strain in the peri-implant cortical bone was affected by the density of the crestal cortical bone and cancellous bone to the same degree for both delayed and immediate loading. In the low-density cancellous bone models under immediate loading, the minimum principal strain in the peri-implant cortical bone decreased with an increase in crestal cortical bone thickness. Conclusions: Cancellous bone density may be a critical factor for avoiding excessive micromotion in immediately loaded implants. Crestal cortical bone thickness significantly affected the maximum extent of micromotion and peri-implant bone strain in simulations of low-density cancellous bone under immediate loading.

A Novel Transmission line model of Cutoff Probe for precise measurement of high density plasma

  • Kim, Si-Jun;Lee, Jang-Jae;Kim, Gwang-Gi;Lee, Ba-Da;Yeom, Hui-Jung;Lee, Yeong-Seok;Kim, Dae-Ung;Kim, Jeong-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.185.1-185.1
    • /
    • 2016
  • Cutoff probe, diagnostics instrument for plasma density, have been received an extensive attention due to simple, robust and lowest assumption. Although the cutoff probe has a long history, physical model is limited in low density plasma. For that reason, we propose a novel transmission line model of cutoff probe for precise measurement of high density plasma. In addition simplified circuit model can be obtained from transmission line model. It can explain simply physics of cutoff probe in high density plasma.

  • PDF

Observation of local water content and current density in the PEMFC system (고분자 전해질 연료전지의 전류밀도와 국소 함수량 관찰)

  • Ko, Dong-Soo;Moon, Cheor-Ron;Choi, Gyung-Min;Kim, Duck-Jool;Jung, Ji-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.69-72
    • /
    • 2008
  • The local water contents and water transfer characteristics in the PEMFC system were investigated by numerical simulations and experiments. The performance of a lab-scale PEMFC is measured for fully humidified gases conditions and non-humidified ones. In order to observe the local water contents and water transfer characteristics inside PEMFC, the numerical simulation using CFD module on STAR-CD(es-pemfc) were conducted. The results show that the water content was increased as increasing current density, whereas it was decreased in high current density region. Then there was close correlation between high water content and internal temperature inside of MEA, and high current density was observed when internal temperature was dramatically increased.

  • PDF

Complementarity Testing of Multiple Apple Production Technologies (사과의 생산 기술결합 관계 검정)

  • Choi, Don-Woo;Kim, Hyun Seok
    • Current Research on Agriculture and Life Sciences
    • /
    • v.33 no.1
    • /
    • pp.7-14
    • /
    • 2015
  • This study identifies the complementarity or substitutability among apple production technology bundles. To identify the production technology bundle relationships, this paper focuses on the 8 most commonly used technology groups, including a high density plant, normal density plant, M9, M26, more than 70% adoption ratio of a medium-maturing variety, the adoption of a new variety, artificial pollination, and low-temperature storage. The results show that M9 has a complementary relationship with a high density plant, yet a substitute relationship with a normal density plant. Meanwhile, M26 has a complementary relationship with both a high and normal density plant. No substitute relationship is found between M9 and M26, yet a complementary relationship is identified between the adoption of artificial pollination and low-temperature storage and M9 or M26.

Development of Open Frame Type High Density Switching Converter (개방형 친밀도 스위칭 컨버터의 개발)

  • Oh, Yong-Seung;Kim, Hee-Il;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.171-173
    • /
    • 2002
  • This paper describes the open frame type high power density switching converter. It is based on active clamp forward converter with synchronous rectifier, and packaged by using the open frame and multi-layer printed circuit board (PCB) techniques to achieve the high power density. Furthermore, windings of transformer and inductor are also realized by multi-layer PCB so that it achieves the higher power density. Through the experiment on the proto-type converter of 50[W], it is confirmed that power density of $50[W/in^3]$ and maximum efficiency of over 91 [%] are obtained.

  • PDF

Hydraulic Conductivity of Bentonite-Sand Mixture for a Potential Backfill Material for a High-level Radioactive Waste Repository

  • Cho, Won-Jin;Lee, Jae-Owan;Kang, Chul-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.495-503
    • /
    • 2000
  • The hydraulic conductivities in the bentonite-sand mixtures with high density were measured, and the effects of sand content and dry density on the hydraulic conductivity were investigated. The hydraulic conductivities of the bentonite-sand mixtures with a dry density of 1.6 Mg/㎥ and 1.8 Mg/㎥ are less than 10$^{-11}$ m/s when the sand content is not higher than 70 wt%. However at the sand content of 90 wt%, the hydraulic conductivity increases rapidly At the same dry density, the logarithm of hydraulic conductivity increases linearly with increasing sand content. The hydraulic conductivity of the bentonite-sand mixture can be explained by the concept of effective clay dry density, and using this concept, the hydraulic conductivities for the mixtures with various sand contents and dry densities can be estimated.

  • PDF

A Density Peak Clustering Algorithm Based on Information Bottleneck

  • Yongli Liu;Congcong Zhao;Hao Chao
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.778-790
    • /
    • 2023
  • Although density peak clustering can often easily yield excellent results, there is still room for improvement when dealing with complex, high-dimensional datasets. One of the main limitations of this algorithm is its reliance on geometric distance as the sole similarity measurement. To address this limitation, we draw inspiration from the information bottleneck theory, and propose a novel density peak clustering algorithm that incorporates this theory as a similarity measure. Specifically, our algorithm utilizes the joint probability distribution between data objects and feature information, and employs the loss of mutual information as the measurement standard. This approach not only eliminates the potential for subjective error in selecting similarity method, but also enhances performance on datasets with multiple centers and high dimensionality. To evaluate the effectiveness of our algorithm, we conducted experiments using ten carefully selected datasets and compared the results with three other algorithms. The experimental results demonstrate that our information bottleneck-based density peaks clustering (IBDPC) algorithm consistently achieves high levels of accuracy, highlighting its potential as a valuable tool for data clustering tasks.

Comparison of Properties of 80MPa-High Strength Concrete According to the bulk density of Silica Fume (실리카흄의 겉보기 밀도에 따른 80MPa급 고강도 콘크리트의 경화 전후 물성)

  • Cho, Hong-Bum;Kim, Young-Sun;Jeon, Hyun-Soo;Son, Weon-Il;Seok, Won-Kyun;Lee, Jae-Myung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.185-186
    • /
    • 2023
  • In the production of high-strength concrete of 80 MPa or more, silica fume is widely used as a binder to ensure the strength safety and pumpability of concrete. The bulk density of silica fume is an important physical property that can have a significant impact on the performance of concrete. Therefore, Understanding the effect of silica fume density on the physical properties of concrete and selecting the appropriate material with the correct density is crucial to ensuring optimal performance in construction projects.

  • PDF