• Title/Summary/Keyword: High Cycle Fatigue Properties

Search Result 84, Processing Time 0.022 seconds

The Effect of Thermomechanical Treatment on the Microstructural Changes and Fatigue Properties in 7050 Al Alloy (7050 AI 합금의 가공열처리가 미세조직변화와 피로성질에 미치는 영향)

  • Kim, M.H.;Kwun, S.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.4
    • /
    • pp.24-33
    • /
    • 1991
  • The effects of thermomechanical treatments on microstructure and fatigue properties of 7050 Al alloy were investigated. The precipitation kinetics changed to a faster rate due to cold deformation employed in this special TAHA thermomechanical treatments including pre-aging, plastic deformation and two step final-aging. The G.P. zones in the under-aged condition were cut by dislocations and dissolved during the plastic deformation. During the low cycle fatigue, the T6' condition showed cyclic hardening behavior whereas the TMT5, TMT27 and T76 conditions showed cyclic softening at above 0.7% total strain amplitudes. The ${\Delta}K_{th}$ value of TMT27 was improved more than two times, compared with that of T76 condition. The T6' with small shearable precipitates resulted in the markedly high ${\Delta}K_{th}$ value. This is thought to be resulted from dislocation reversibility and roughness-induced crack closure due to planarity of slip.

  • PDF

Validation of applicability of induction bending process to P91 piping of prototype Gen-IV sodium-cooled fast reactor (PGSFR)

  • Tae-Won Na;Nak-Hyun Kim;Chang-Gyu Park;Jong-Bum Kim;Il-Kwon Oh
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3571-3580
    • /
    • 2023
  • The application of the induction bending process to pipe systems in various industrial fields is increasing. Recently, efforts have also been made to apply this bending process to nuclear power plants because it can innovatively reduce welded parts of the curved pipes, such as elbows. However, there have been no cases of the application of induction bending to the piping of nuclear power plants. In this study, the applicability of the P91 induction bending piping for the sodium-cooled fast reactor PGSFR was validated through high temperature low cycle fatigue tests and creep tests using P91 induction bending pipe specimens. The tests confirmed that the materials sufficiently satisfied the fatigue life and the creep rupture life requirements for P91 steel at 550 ℃ in the ASME B&PV Code, Sec. III, Div. 5. The results show that the effects of heating and bending by the induction bending process on the material properties were not significant and the induction bending process could be applicable to piping system of PGSFR well.

A Study on the Effects of the Fatigue Life due to the Processing of the Butt Weld Specimens and the Fatigue Life Estimation due to the Weld Zone Profiles (철도 구조물용 맞대기 용접시편 가공에 의한 피로수명 영향 및 용접부 형상을 이용한 피로수명 예측 연구)

  • Kim Jae-Hoon
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.4 s.35
    • /
    • pp.371-378
    • /
    • 2006
  • This study investigates the effects of the material properties and the fatigue behaviors in the SM490A material butt weld specimens due to the heat-treatment and the grinding. In the fatigue behavior, the heat-treatment affects the fatigue life. The S-N curves of both matrix specimen and butt weld specimen are reversed at some cycle by the existence or nonexistence of heat-treatment. The grinding on the bead makes the fatigue limit decrease in the all specimens. But the reinforcement removed, the fatigue limit increases at the high cycle. Also, this study investigates the fatigue life estimation by examining butt weld bead profiles. The butt weld beads, which are welded by semi-robot method, have non-uniform bead profiles described by $\theta,\;\rho$ and h. The stress concentration factors $K_t$, are changed by each different $\theta,\;\rho$ and h from 1.395 to 2.863. Hence, the sensitivity of $K_t$ is changed by each $\theta,\;\rho$ and h. As $\theta$ becomes lower and $\rho$ and h become higher, $K_t$ increases. The fatigue life can he estimated very closely for the AAY specimens without residual stress using only butt weld bead profiles. But, fur the AAN specimens with residual stress, the fatigue life must be estimated by considering both the weld bead profiles and the residual stress data.

Electro-mechanical properties in Bi-2223 superconducting composite tape due to axial fatigue loading (축방향 피로하중에 의한 Bi-2223 복합 초전도선재의 전기-기계적 특성)

  • Shin, Hyung-Seop;Dizon, John Ryan C.;Kim, Ki-Hyun;Oh, Sang-Soo;Ha, Dong-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.345-348
    • /
    • 2004
  • For practical applications, the evaluation of reliability or endurance of HTS conductors is necessary. The mechanical properties and the critical current, $I_c$, of multifilamentary Bi-2223 superconducting tapes, externally reinforced with stainless steel foils, subjected to high cycle fatigue loading in the longitudinal direction were investigated at 77K. The S-N curves were obtained and its transport property was evaluated with the increase of repeated cycles at different stress amplitudes. The effect of the stress ratio, R, on the $I_c$ degradation behavior under fatigue loading was also examined considering the practical application situation of HTS tapes. Microstructure observation was conducted in order to understand the L degradation mechanism in fatigued Bi-2223 tapes.

  • PDF

Effect of Fine Copper Sulfides on the High Cycle Fatigue Properties of Bake Hardening Steels for Automotive (자동차용 소부경화형(BH) 강의 고주기 피로 특성에 미치는 미세 황화물의 영향)

  • Kang, Seonggeu;Kim, Jinyong;Choi, Ildong;Lee, Sungbok;Hong, Moonhi
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.3
    • /
    • pp.203-210
    • /
    • 2011
  • Bake hardening steels have to resist strain aging to prevent the yield strength increment and stretcher strain during press process and to enhance the bake hardenability during baking process after painting. The bake hardening steels need to control the solute carbon and the solute nitrogen to improve the bake hardenability. Ti and/or Nb alloying for nitride and carbide precipitation and low carbon content below 0.003% are used to solve strain aging and formability problem for automotive materials. However, in the present study, the effect of micro-precipitation of copper sulfide on the bake hardenability and fatigue properties of extremely low carbon steel has been investigated. The bake hardenability of Cu-alloyed bake hardening (Cu-BH) steel was slightly higher (5 MPa) than that of Nb-alloyed bake hardening (Nb-BH) steel, but the fatigue limit of Cu-BH steel was far higher (45 MPa) than that of Nb-BH steel. All samples showed the ductile fracture behavior and some samples revealed distinct fatigue stages, such as crack initiation, stable crack growth and unstable crack growth.

Tensile and Fatigue Strengths of STS304L for LNG Membrane Storage Tank (멤브레인 LNG 저장탱크용 STS304L의 인장 및 피로강도)

  • Na, Seong Hyeon;Kim, Yeong Gyun;Kim, Jae Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.9-14
    • /
    • 2016
  • STS304L of membrane structure has been used for a LNG storage tank and has exposed long time under the cryogenic temperature. The purposes of this study are to evaluate the mechanical properties of base and used materials for STS304L of membrane. The tensile and high cycle fatigue tests were investigated for STS304L of membrane used over 20 years at room temperature and $-162^{\circ}C$. In addition, the test of base STS304L was performed in order to compare with used material properties. The chemical composition and phase change were investigated from EDS and XRD. From results of tensile test, yield and ultimate tensile strengths of used STS304L are smaller than those of base STS304L. S-N curves were obtained from fatigue tests at both temperatures. Also, P-S-N curves were presented with statistical method recommend by JSME-S002. Fractography was conducted for analysis of fracture mechanisms.

Study on tension-tension fatigue strength properties of underwater welded joints of SM41A-2 Plate-to-Plate (수중용접한 국산 SM41A-2강판의 편진반복 인장하중하의 피로강도특성에 관한 연구)

  • 오세규;박주성;한상덕
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.71-81
    • /
    • 1987
  • Nowadays, the high development of industrial technique demands the optimal design of marine structures to be welded under the water, because the underwater welding of the ship hull and marine structures can decrease manpower and cost of production. However there is not available at present any report on fatigue behavior about underwater welded joints. In this paper under tention- tension repeated fatigue stress with frequency of 10 cycles per second by local controlled system, the fatigue strength properties of underwater welded joints of SM41A-2 Plate-to-Plate of 10 mm thickness were experimentally examined. The results obtained were as follows : 1) The fatigue strength of underwater welded joints of SM41A-2 was peaked at the heat input of about 1, 400 joule/mm(180 A, 36 V), while, at the heat input of more than about 1, 100 joule/mm (160 A, 33 V) that of the underwater welds at the higher than cycle of life rather than the lower cycle was higher than that of the base metal but lower than that of the atmosphere welds on account of both cooling and notch effects. 2) The fatigue limit of underwater welds increased with an increase of heat input resulting in a peak of that at the heat input of about 1, 400 joule/mm and then decreased gradually. 3) The fatigue strength at N cycles was peaked between the heat input of about 1, 400 and 1, 700 joule/mm where the strain was rapidly increased. 4) It was confirmed that the optimal zone of heat input condition for obtaining the underwater welds fatigue strength higher than that of the base metal exists, and if out of this zone, the fatigue strength of the underwater welds was lower than that of the base metal because of lack weld penetration, inclusion of slag, voids, etc. 5) By the fatigue test, the underwater welds fractured brittly without visual deformation, so the strain was remarkably less than of the atmosphere welds. 6) The fatigue life factor was peaked at the heat input of about 1, 600 joule/mm (200 A, 36 V) at which the mean strain is a little higher than that of the base metal but quite lower than those of the atmosphere welds, resulting in good underwater welds because both fatigue strength and ductility of the underwater welds are higher than those of the base metal at such heat input.

  • PDF

High Temperature Mechanical Properties of 713LC Ni-based Superalloy (니켈기 초내열 713LC 합금의 고온 기계적 특성)

  • Na, Yeong-Sang;Kim, Jong-Yeop;Lee, Jong-Hun;Park, No-Gwang
    • 연구논문집
    • /
    • s.33
    • /
    • pp.167-174
    • /
    • 2003
  • Alloy 713LC was developed to improve the tensile strength and ductility by reducing the carbon content of Alloy 713C. As Alloy 713LC was designed to minimize the mechanical property change with process conditions, it is generally utilized in the parts which have thick and thin sections simultaneously. In the thick and the thin sections, quite different properties are required. Consequently it is essential to crucially control the local mechanical properties of a parts by optimizing the process condition and heat treatment. In this research, high temperature mechanical properties including creep-rupture and strain-control low cycle fatigue were investigated together with the microstructural variations with heat treatment. Failure mechanism was also analyzed by observing the fracture surface to correlate the variation of mechanical properties with the microstructural change.

  • PDF

Transport Property of Externally Reinforced Bi-2223 Superconducting Tape under Axial Fatigue Loading

  • Shin, Hyung-Seop;John-Ryan C. Dizon;Kim, Ki-Hyun;Oh, Sang-Soo;Ha, Dong-Woo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.4
    • /
    • pp.22-26
    • /
    • 2004
  • For practical applications, the evaluation of reliability or endurance of HTS conductors is necessary. The mechanical properties and the critical current, Ie, of multifilamentary Bi-2223 superconducting tapes, externally reinforced with stainless steel foils, subjected to high cycle fatigue loading in the longitudinal direction were investigated at 77K. The S-N curves were obtained and its transport property was evaluated with the increase of repeated cycles at different stress amplitudes. The effect of the stress ratio, R, on the Ie degradation behavior under fatigue loading was also examined considering the practical application situation of HTS tapes. Microstructure observation was conducted in order to understand the Ie degradation mechanism in fatigued Bi-2223 tapes.

Influence of Stress Ratio of Elastic Waves Generated by Fatigue Crack Growth and Penetration in 6061 Aluminum Plates (6061알루미늄의 피로 균열 성장과 관통에 따른 탄성파의 응력비 영향)

  • Ahn Seok Hwan;Kim Jin Wook;Nam Ki Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.822-827
    • /
    • 2005
  • The characteristics of elastic waves emanating from crack initiation and propagation in 6061 aluminum alloy subjected to fatigue loading with different stress ratio was investigated. The objective of this study is to determine the properties of the signals generated from each stage of fatigue crack growth. AS a crack propagates, substantial elastic wave occurred just prior to penetration. Then it decreased and the crack penetrated. The waveforms and their power spectra were found to be dependent on the different stress ratio associated with the signals. It is determined that high-frequency signal $0.5{\sim}0.75$ MHz is most likely emitted during crack propagation at peak load of fatigue cycle which release the highest energy. It is determined that 0.3 MHz is closely related to crack closure effect. The frequency peaks below 0.25 MHz may be attributed to fretting or hydraulic noise.