• Title/Summary/Keyword: High Cycle Fatigue

Search Result 333, Processing Time 0.03 seconds

High Temperature Fatigue Behavior of A356 and A319 Heat Resistant Aluminum Alloys (A356 및 A319 내열 알루미늄 합금의 고온 피로 변형 거동)

  • Park, Jong-Soo;Sung, Si-Young;Han, Bum-Suck;Jung, Chang-Yeol;Lee, Kee-Ahn
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.467-469
    • /
    • 2009
  • In this study, fatigue samples were prepared from cylinder head parts that are actually used in domestic (A) and foreign (B) automobiles; high-temperature, high-cycle, and low-cycle fatigue characteristics were then evaluated and compared. A study on the correlation between the microstructural factor and high temperature fatigue characteristic was attempted. The chemical compositions of the heat resistant aluminum alloys above represented A356 (A) and A319 (B), respectively. The result of the tensile strength test on material B at $250^{\circ}C$ was higher by 30.8MPa compared to material A. On the other hand, elongation was 8.5% higher for material A. At $130{\circ}C$, material B exhibited high fatigue life given high cycle fatigue under high stress, whereas material A showed high fatigue life when stress was lowered. With regard to the low-cycle fatigue result ($250^{\circ}C$) showing higher fatigue life as ductility is increased, material A demonstrated higher fatigue life. Through the observation of the differences in microstructure and the fatigue fracture surface, an attempt to explain the high-temperature fatigue deformation behavior of the materials was made.

  • PDF

Study on Characteristics of Low Cycle Fatigue for High Alloy and Austenite Stainless Steel (고합금강과 오스테나이트 스테인레스 강의 저사이클 피로 특성 연구)

  • Kim, Y.C.;Back, S.H.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.29-34
    • /
    • 2010
  • As the steam temperature of fossil power plant boiler is increasing, the use of 9Cr-1Mo high alloy material is prevalent and it is needed to investigate the characteristics of low cycle fatigue for high alloy and austenite stainless steel that has used up to recently. As a result of test, in 9Cr-1Mo high alloy steel, the relation of strain and fatigue life is non-linear and the crack mode of low cycle fatigue is brittle but in the austenite stainless steel, that of strain and fatigue life is linear and the crack mode of low cycle fatigue is ductile. Comparing the fatigue life between high alloy and austenite stainless steel, there is no consistent characteristics as to strains. But the fatigue life of 9Cr-1Mo steel is longer by 25% than that of STS304 stainless steel in the relatively low, 0.3% strain. In the other strain, the fatigue life of two materials is similar.

A Study on the Relationship between Tensile and Low Cycle Fatigue Properties of High Strength Material (고강도 소재의 인장과 저주기피로 물성치의 연관성에 관한 연구)

  • Park, M.K.;Suh, C.H.
    • Transactions of Materials Processing
    • /
    • v.23 no.2
    • /
    • pp.110-115
    • /
    • 2014
  • Low cycle fatigue characteristics are very important in the development of automobile suspension parts. Fatigue properties using the strain life approach are usually obtained from low cycle fatigue tests. However, low cycle fatigue testing requires a lot of time and cost. In the current study, an attempt to estimate low cycle fatigue properties of high strength steel sheet from tensile test and tensile simulations is performed. In addition, low cycle fatigue testing was conducted to compare the fatigue properties obtained from tensile testing and simulations. In conclusion, the results effectively predict the low cycle fatigue properties. However, some deviations still exist.

Fatigue properties of welded joints for TMCP steels (TMCP 고장력강 용접부의 피로 특성에 관한 연구)

  • 임채범;권영각;엄기원
    • Journal of Welding and Joining
    • /
    • v.8 no.2
    • /
    • pp.40-52
    • /
    • 1990
  • Fatigue behavior of the AH, DH and EH grade TMCP(Thermo-Mechanical Control Process) steels was studied. High cycle and low cycle fatigue tests were carried out for the weldment and base metal of each steel. The results showed that the fatigue limit at 2 * $10^6$ cycles was 33 to 37 kg/$mm^2$ for the base metal and 30 to 34 kg/$mm^2$ for the weldment. The ratio of fatigue limit to tensile strength for TMCP steels was 0.65 to 0.71, which was a value close to the upper limit for the ordinary steels. It was also found that the high cycle fatigue behavior of TMCP steels could be affected by the microstructures of base metal. It will be necessary to have fine structure for TMCP steels to increase the fatigue resistance. In low cycle fatigue test, the fatigue lifetime of AH and DH steels accorded well with the ASME best fit curve, while that of EH steel was considerably lower than the fatigue lifetime of the other steels. Fatigue resistance of the weldment made by high heat input(180kJ/cm) welding was not lower than that made by low heat input(80kJ/cm) welding in case of high cycle fatigue, but the high heat input welding decreased the fatigue resistance in case of low cycle fatigue.

  • PDF

A Prediction Model for Low Cycle and High Cycle Fatigue Lives of Pre-strained Fe-18Mn TWIP Steel (Fe-18Mn TWIP강의 Pre-strain에 따른 저주기 및 고주기 피로 수명 예측 모델)

  • Kim, Y.W.;Lee, C.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.1
    • /
    • pp.11-16
    • /
    • 2010
  • The influence of pre-strain on low cycle fatigue behavior of Fe-18Mn-0.05Al-0.6C TWIP steel was studied by conducting axial strain-controlled tests. As-received plates were deformed by rolling with reduction ratios of 10 and 30%, respectively. A triangular waveform with a constant frequency of 1 Hz was employed for low cycle fatigue test at the total strain amplitudes in the range of ${\pm}0.4\;{\sim}\;{\pm}0.6$ pct. The results showed that low-cycle fatigue life was strongly dependent on the amount of pre-strain as well as the strain amplitude. Increasing the amount of prestrain, the number of reversals to failure was significantly decreased at high strain amplitudes, but the effect was negligible at low strain amplitudes. A new model for predicting fatigue life of pre-strained body has been suggested by adding ${\Delta}E_{pre-strain}$ to the energy-based fatigue damage parameter. Also, high-cycle fatigue lives predicted using the low-cycle fatigue data well agreed with the experimental ones.

The Effect of Initial α' on Low and High Cycle Fatigue Behavior of STS 304 Stainless Steel (STS 304 강의 저주기 및 고주기 피로에 있어 초기 마르텐사이트의 영향)

  • Lee, Hyun-Seung;Sin, Hyung-Ju;Kim, Song-Hee
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.331-339
    • /
    • 2001
  • Zero to tension fatigue tests and strain controlled fatigue tests were carried out to find how initial strain induced martensite, ${\alpha}^{\prime}$ affects low and high cycle fatigue behavior and fatigue crack growth mechanisms. Microscopic study and phase analysis were carried out with TEM, SEM, EDAX, Optical Microscope, Ferriscope, and X-ray diffractometry. The amount of Initial ${\alpha}^{\prime}$ was controlled from 0% to 33% by controlling the temperatures for cold working and heat treatment. Lower contents of initial ${\alpha}^{\prime}$ showed higher fatigue resistance in low cycle fatigue but lower fatigue resistance in high cycle fatigue because it is ascribed to the more transformation of ${\alpha}^{\prime}$ martensite during low cycle fatigue and higher ductility. In high cycle fatigue, fatigue life is attributed to the strength and phase transformation of austenite into ${\alpha}^{\prime}$ during fatigue was negligible. ${\gamma}$ boundary, ${\gamma}/twin$ boundary, and ${\gamma}/{\alpha}^{\prime}$ boundary were found to be the preferred site of fatigue crack initiation.

  • PDF

High Temperature Fatigue Deformation Behavior of Automotive Heat Resistant Aluminum Alloys (자동차 부품용 내열 알루미늄 합금의 고온 피로 변형 거동)

  • Park, Jong-Soo;Sung, Si-Young;Han, Bum-Suck;Jung, Chang-Yeol;Lee, Kee-Ahn
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.1
    • /
    • pp.28-38
    • /
    • 2010
  • High temperature high cycle and low cycle fatigue deformation behavior of automotive heat resistant aluminum alloys (A356 and A319 based) were investigated in this study. The microstructures of both alloys were composed of primary Al-Si dendrite and eutectic Si phase. However, the size and distribution for eutectic Si phase varied: a coarse and inhomogeneous distributed was observed in alloy B (A319 based). A brittle intermethallic phase of ${\alpha}-Fe\;Al_{12}(Fe,Mn)_3Si_2$ was detected only in B alloy. Alloy B exhibited high fatigue life only under a high stress amplitued condition in the high cycle fatigue results, whereas alloy A showed high fatigue life when stress was lowered. With regard to the low-cycle fatigue result ($250^{\circ}C$) showing higher fatigue life as ductility increased, alloy A demonstrated higher fatigue life under all of the strain amplitude conditions. Fractographic observations showed that large porosities and pores near the outside surface could be the main factor in the formation of fatigue cracks. In alloy B. micro-cracks were formed in both the brittle intermetallic and coarse Si phasese. These micro-cracks then coalesced together and provided a path for fatigue crack propagation. From the observation of the differences in microstructure and fractography of these two automotive alloys, the authors attempt to explain the high-temperature fatigue deformation behavior of heat resistant aluminum alloys.

Effect of Cast Microstructure on Fatigue Behaviors of A356 Aluminum Alloy for Automotive Wheel (자동차휠용 A356 알루미늄 합금의 주조조직이 피로특성에 미치는 영향)

  • Song, Jeon-Young;Park, Joong-Cheol;Ahn, Yong-Sik
    • Journal of Korea Foundry Society
    • /
    • v.30 no.1
    • /
    • pp.46-51
    • /
    • 2010
  • Recently, automotive industry is attempting to replace steels for automotive parts with light-weight alloys such as aluminum alloy, because of the growing environmental regulations governing exhaust gas and the engine effectiveness of a vehicle. The low cycle fatigue (LCF) and high cycle fatigue (HCF) properties as well as the microstructure and tensile property were investigated on the low pressure cast A356 aluminum alloy wheel, which was followed by T6 heat treatment. The cast microstructure of the alloy influenced significantly on the low cycle and high cycle fatigue behaviors. The rim part of cast aluminum alloy wheel showed higher low cycle and high cycle fatigue strength compared with the spoke part, which should be caused by higher cooling rate of rim part. The spoke part of the wheel showed coarser dendrite arm spacing (DAS) and wide eutectic zone in the microstructure, which resulted in the partial brittle fracture and lower fatigue life time.

A complete integrity assessment of welded connections under high and low cycle fatigue followed by fracture failure

  • Feng, Liuyang;Liu, Tianyao;Qian, Xudong;Chen, Cheng
    • Steel and Composite Structures
    • /
    • v.43 no.4
    • /
    • pp.465-481
    • /
    • 2022
  • This paper presents a comprehensive integrity assessment of welded structural components, including uniform high- and low-cycle fatigue assessment of welded plate joints and fatigue-induced fracture assessment of welded plate joints. This study reports a series of fatigue and fracture tests of welded plate joints under three-point bending. To unify the assessment protocol for high- and low-cycle fatigue of welded plate joints, this study develops a numerical damage assessment framework for both high- and low-cycle fatigue. The calibrated damage material parameters are validated through the smooth coupon specimens. The proposed damage-based fatigue assessment approach describes, with reasonable accuracy, the total fatigue life of welded plate joints under high- and low-cycle fatigue actions. Subsequently, the study performs a tearing assessment on the ductile crack extension of the fatigue-induced crack. The tearing assessment diagram derives from the load-deformation curve of a single-edge notched bend, SE(B) specimen and successfully predicts the load-crack extension relation for the reported welded plate joints during the stable tearing process.

High-cycle fatigue characteristics of quasi-isotropic CFRP laminates

  • Hosoi, Atsushi;Arao, Yoshihiko;Karasawa, Hirokazu;Kawada, Hiroyuki
    • Advanced Composite Materials
    • /
    • v.16 no.2
    • /
    • pp.151-166
    • /
    • 2007
  • High-cycle fatigue characteristics of quasi-isotropic carbon fiber reinforced plastic (CFRP) laminates [-45/0/45/90]s up to $10^8$ cycles were investigated. To assess the fatigue behavior in the high-cycle region, fatigue tests were conducted at a frequency of 100 Hz, since it is difficult to investigate the fatigue characteristics in high-cycle at 5 Hz. Then, the damage behavior of the specimen was observed with a microscope, soft X-ray photography and a 3D ultrasonic inspection system. In this study, to evaluate quantitative characteristics of both transverse crack propagation and delamination growth in the high-cycle region, the energy release rate associated with damage growth in the width direction was calculated. Transverse crack propagation and delamination growth in the width direction were evaluated based on a modified Paris law approach. The results revealed that transverse crack propagation delayed under the test conditions of less than ${\sigma}_{max}/{\sigma}_b$ = 0.3 of the applied stress level.