• Title/Summary/Keyword: High Concentrate Diet

Search Result 115, Processing Time 0.026 seconds

Effect of Dietary Concentrate on Fungal Zoosporogenesis in Sheep Rumen

  • Matsui, H.;Ushida, K.;Kojima, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.6
    • /
    • pp.599-602
    • /
    • 1997
  • Fluctuation of fungal zoospores on agar strips were observed in the rumen of sheep fed three different levels of dietary concentrate, timothy hay: concentrate = 3:0 (AF diet), timothy hay: concentrate = 2:1 (MC diet), timothy hay : concentrate = 1:2 (HC diet) respectively. The number of zoospores on the strip was drastically decreased after morning feed with AF diet. The number was the highest at 0 h ($1.34{\times}10^2/cm^2$), then declined to $2.0{\times}10^3/cm^2$ at 9 h after feeding. In the rumen of animals fed MC diet, the number of zoospores decreased with time after feeding, although the decrement was slower than that with AF diet. During 0-3 h after feeding, number of zoospores was $1.6{\times}10^4/cm^2$. Although the number slightly decreased at 6 and 9 h, relatively high levels were maintained. It seems that the inducers for zoospore-release were maintained at relatively high concentration throughout incubation period. The fluctuation pattern of number of germinated zoospores was different in the rumen of animals fed HC diet from those of AF and MC diets. The number of zoospores was constantly maintained at lower level ($1.0{\times}10^3/cm^2$) than the other diets. For MC diet, continuous high number of germinated zoospores may be due to the continuous release of zoospores by hemes in timothy hay and concentrate feed, and by unknown mechanisms. Unlike AF diet which promoted relatively rapid decline of zoosporogenesis, supplementation of concentrate feed to the timothy hay did not promote such rapid decline of zoosporogenesis. It was suggested that release of inducers for zoosporogenesis from concentrate feed persisted longer time than from timothy hay. HC diet promoted the lowest zoospore production, suggested the lowest fungal population size in this experiment. These results show that an appropriate amount of concentrate may support fungal growth and stimulate zoosporogenesis in the rumen.

Nutrient Utilization and Compensatory Growth in Crossbred (Bos indicus×Bos taurus) Calves

  • Santra, A.;Pathak, N.N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.8
    • /
    • pp.1285-1291
    • /
    • 1999
  • A feeding trial was carried out over 238 days to determine the effect of compensatory growth in crossbred calves having 166 kg body weight. Fifteen crossbred calves were divided into two groups of five calves (G1 group) and ten calves (G2 group) as per randomized block design. Growth study was conducted on the feeding of wheat straw based diet containing 60 and 30 percent concentrate supplying equal amount of protein in group G1 and G2 respectively for 119 days (phase - I). At the end of phase-I, calves of G2 group were subdivided in to two groups (G3 and G4). One sub group (G4) received 60% concentrate in their diet (during 120 to 238 days of experiment) while other subgroup G3 received 30% concentrate in their diet (phase-II). The calves of G1 group continued to receive the same diet as during phase-I experiment. Mean DM intake was significantly higher in calves fed high level of concentrate (in G1 and G4 groups), which resulted in significantly higher digestibility of all nutrients except NDF. Nitrogen balance was positive in all the groups and showed significant differences in phase-II (higher nitrogen retention in G4 group than G1 group). ME intake was significantly affected by the level of dietary concentrate, being higher in high concentrate fed group (G1 and G4 than G2 and G3 group). Higher daily body weight gain in the calves of G4 group during phase-II than in G1 and G3 groups was due to compensatory growth on shifting animals from low concentrate to high concentrate based ration. Average daily body weight gain was higher in phase-I than in the phase-II. Protein and energy intake per unit body weight gain were significantly lower in calves fed high concentrate diet.

Influence of Fiber Content and Concentrate Level on Chewing Activity, Ruminal Digestion, Digesta Passage Rate and Nutrient Digestibility in Dairy Cows in Late Lactation

  • Tafaj, M.;Kolaneci, V.;Junck, B.;Maulbetsch, A.;Steingass, H.;Drochner, W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.8
    • /
    • pp.1116-1124
    • /
    • 2005
  • The influence of fiber content of hay (low-fiber 47% NDF and high-fiber 62% NDF of DM) and concentrate level (high 50% and low 20% of ration DM) on chewing activity, passage rate and nutrient digestibility were tested on four restrict-fed (11.1 to 13.7 kg DM/d) Holstein cows in late lactation. Aspects of ruminal fermentation and digesta particle size distribution were also investigated on two ruminally cannulated (100 mm i.d.) cows of the same group of animals. All digestion parameters studied were more affected by the fiber content of the hay and its ratio to non structural carbohydrates than by the concentrate level. Giving a diet of high-fiber (62% NDF) hay and low concentrate level (20%) increased chewing activity but decreased solid passage rate and total digestibility of nutrients due to a limited availability of fermentable OM in the late cut fiber rich hay. A supplementation of high-fiber hay with 50% concentrate in the diet seems to improve the ruminal digestion of cell contents, whilst a depression of the ruminal fiber digestibility was not completely avoided. Giving a diet of low-fiber (47% NDF) hay and high concentrate level (50%) reduced markedly the chewing and rumination activity, affected negatively the rumen conditions and, consequently, the ruminal digestion of fiber. A reduction of the concentrate level from 50 to 20% in the diet of low-fiber hay improved the rumen conditions as reflected by an increase of the ruminal solid passage rate and of fiber digestibility and in a decrease of the concentration of large particles and of the mean particle size of the rumen digesta and of the faeces. Generally, it can be summarised that, (i) concentrate supplementation is not a strategy to overcome limitations of low quality (fiber-rich) hay, and (ii) increase of the roughage quality is an effective strategy in ruminant nutrition, especially when concentrate availability for ruminants is limited.

Identification of Differentially Expressed Proteins in Liver in Response to Subacute Ruminal Acidosis (SARA) Induced by High-concentrate Diet

  • Jiang, X.Y.;Ni, Y.D.;Zhang, S.K.;Zhang, Y.S.;Shen, X.Z.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.8
    • /
    • pp.1181-1188
    • /
    • 2014
  • The aim of this study was to evaluate protein expression patterns of liver in response to subacute ruminal acidosis (SARA) induced by high-concentrate diet. Sixteen healthy mid-lactating goats were randomly divided into 2 groups and fed either a high-forage (HF) diet or a high-concentrate (HC) diet. The HC diet was expected to induce SARA. After ensuring the occurrence of SARA, liver samples were collected. Proteome analysis with differential in gel electrophoresis technology revealed that, 15 proteins were significantly modulated in liver in a comparison between HF and HC-fed goats. These proteins were found mainly associated with metabolism and energy transfer after identified by matrix-assisted laser desorption ionization/time of flight. The results indicated that glucose, lipid and protein catabolism could be enhanced when SARA occurred. It prompted that glucose, lipid and amine acid in the liver mainly participated in oxidation and energy supply when SARA occurred, which possibly consumed more precursors involved in milk protein and milk fat synthesis. These results suggest new candidate proteins that may contribute to a better understanding of the mechanisms that mediate liver adaptation to SARA.

Elevated thyroid hormones caused by high concentrate diets participate in hepatic metabolic disorders in dairy cows

  • Chen, Qu;Wu, Chen;Yao, Zhihao;Cai, Liuping;Ni, Yingdong;Mao, Shengyong
    • Animal Bioscience
    • /
    • v.35 no.8
    • /
    • pp.1184-1194
    • /
    • 2022
  • Objective: High concentrate diets are widely used to satisfy high-yielding dairy cows; however, long-term feeding of high concentrate diets can cause subacute ruminal acidosis (SARA). The endocrine disturbance is one of the important reasons for metabolic disorders caused by SARA. However, there is no current report about thyroid hormones involved in liver metabolic disorders induced by a high concentrate diet. Methods: In this study, 12 mid-lactating dairy cows were randomly assigned to HC (high concentrate) group (60% concentrate of dry matter, n = 6) and LC (low concentrate) group (40% concentrate of dry matter, n = 6). All cows were slaughtered on the 21st day, and the samples of blood and liver were collected to analyze the blood biochemistry, histological changes, thyroid hormones, and the expression of genes and proteins. Results: Compared with LC group, HC group showed decreased serum triglyceride, free fatty acid, total cholesterol, low-density lipoprotein cholesterol, increased hepatic glycogen, and glucose. For glucose metabolism, the gene and protein expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase 1 in the liver were significantly up-regulated in HC group. For lipid metabolism, the expression of sterol regulatory element-binding protein 1, long-chain acyl-CoA synthetase 1, and fatty acid synthase in the liver was decreased in HC group, whereas carnitine palmitoyltransferase 1α and peroxisome proliferator activated receptor α were increased. Serum triiodothyronine, thyroxin, free triiodothyronine (FT3), and hepatic FT3 increased in HC group, accompanied by increased expression of thyroid hormone receptor (THR) in the liver. Conclusion: Taken together, thyroid hormones may increase hepatic gluconeogenesis, β-oxidation and reduce fatty acid synthesis through the THR pathway to participate in the metabolic disorders caused by a high concentrate diet.

Rumen fermentation and microbial diversity of sheep fed a high-concentrate diet supplemented with hydroethanolic extract of walnut green husks

  • Huan Wei;Jiancheng Liu;Mengjian Liu;Huiling Zhang;Yong Chen
    • Animal Bioscience
    • /
    • v.37 no.4
    • /
    • pp.655-667
    • /
    • 2024
  • Objective: This study aimed to assess the impact of a hydroethanolic extract of walnut green husks (WGH) on rumen fermentation and the diversity of bacteria, methanogenic archaea, and fungi in sheep fed a high-concentrate diet. Methods: Five healthy small-tailed Han ewes with permanent rumen fistula were selected and housed in individual pens. This study adopted a self-controlled and crossover design with a control period and an experimental period. During the control period, the animals were fed a basal diet (with a ratio of concentrate to roughage of 65:35), while during the treatment period, the animals were fed the basal diet supplemented with 0.5% hydroethanolic extract of WGH. Fermentation parameters, digestive enzyme activities, and microbial diversity in rumen fluid were analyzed. Results: Supplementation of hydroethanolic extract of WGH had no significant effect on feed intake, concentrations of total volatile fatty acids, isovalerate, ammonia nitrogen, and microbial protein (p>0.05). However, the ruminal pH, concentrations of acetate, butyrate and isobutyrate, the ratio of acetate to propionate, protozoa count, and the activities of filter paper cellulase and cellobiase were significantly increased (p<0.05), while concentrations of propionate and valerate were significantly decreased (p<0.05). Moreover, 16S rRNA gene sequencing revealed that the relative abundance of rumen bacteria Christensenellaceae R7 group, Saccharofermentans, and Ruminococcaceae NK4A214 group were significantly increased, while Ruminococcus gauvreauii group, Prevotella 7 were significantly decreased (p<0.05). The relative abundance of the fungus Pseudomonas significantly increased, while Basidiomycota, Fusarium, and Alternaria significantly decreased (p<0.05). However, there was no significant change in the community structure of methanogenic archaea. Conclusion: Supplementation of hydroethanolic extract of WGH to a high-concentrate diet improved the ruminal fermentation, altered the structure of ruminal bacterial and fungal communities, and exhibited beneficial effects in alleviating subacute rumen acidosis of sheep.

EFFECTS OF ACTIVATED CARBON ON GROWTH, RUMINAL CHARACTERISTICS, BLOOD PROFILES AND FEED DIGESTIBILITY IN SHEEP

  • Garillo, E.P.;Pradhan, R.;Tobioka, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.1
    • /
    • pp.43-50
    • /
    • 1995
  • This study was carried out to investigate the effects of activated carbon (AC) on growth, ruminal charateristics, blood profiles and feed digestibility in sheep, using roughage-based or concentrate-based diets. Twelve Suffolk breed of sheep of similar age and weight were distributed into 4 groups in a $2{\times}2$ factorial design. Two groups were fed a roughage-based diet with (R + AC) and without AC (R - AC), while the other two were fed a concentrate-based diet with (C + AC) and without AC (C - AC), respectively. The addition of 0.3% AC was based on dry matter of feed offered to animals. The incorporation of AC in roughage and concentrate based diets had no marked effects on feed intake, daily gain and feed conversion of the animals within experimental diets. The results obtained might be due to the low level of AC added in the diet. The animal on both concentrate-based diets were higher than the roughage-based diets in terms of daily gain and feed conversion ratio. However, it was observed that the animals provided with AC in the concentrate-based diet did not suffer from diarrhea and easily adjusted to high concentrate feeding. Further, the pH value for all diets before feeding was noted to be similar. After feeding, however, pH was shown to be higher in R + AC (p < 0.05) than in C + AC diet. Rumen protozoa number was decreased after feeding for both + AC diets, but in C - AC diet it was higher than in the roughage-based diets. For ammonia-nitrogen, C - AC was found to be higher than C + AC diet and the roughage-based diets before feeding. Total volatile fatty acid concentration, propionate and valerate molar ratios for both diets and time of collection were not affected. However, acetate, butyrate and valerate molar ratios were observed to be affected by diets and time of collections. The diets with AC increased (p < 0.05) before feeding for acetate molar ratio, but not different within diet, however, the roughage diets were found to be higher (p < 0.05) in acetate than the concentrate diet. In the blood parameters, the glutamic pyruvic transaminase (GPT), red and white blood cell (RBC, WBC) counts and packed cell volume (PCV) did not differ within and among the diets. Likewise, the WBC differential count in both diets with either - AC or + AC were similar in trend. However, lymphocyte count was noted to be increased in R + AC than the R - AC diet. The addition of AC in both diets did not affect nutrient digestibilities within diets.

Characteristics of Digestion Dynamics of Rice and Oat Straw Relating to Microbial Digestion in the Rumen of Sheep Given High-Concentrate Diets

  • Goto, M.;Morio, T.;Kojima, E.;Nagano, Y.;Yamada, Y.;Horigane, A.;Yamada, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.9
    • /
    • pp.1219-1227
    • /
    • 2000
  • Rumination behavior, in vivo digestibility of cell wall constituents, particle size reduction in the rumen, and retention time in the digestive tract of sheep were examined using rice and oat straw as roughage sources. The in sacco digestibility, rumen fermentation, and microbial population and internal adenosine 5-triphosphate (ATP) content were also determined under feeding conditions of high-roughage and high-concentrate diets. Chewing number and time in rumination behavior were higher with rice straw than with oat straw, while the in sacco and in vivo DMD of rice straw were consistently lower than those of oat straw. Rice straw also showed higher frequency of thinner and longer particles in the rumen contents and lower retention time in the whole digestive tract as compared to those of oat straw. Rice straw was more effective to maintain the ruminal pH than oat straw, being reflected in higher internal ATP content of large-type protozoa on the high- concentrate diet. Changes in the ruminal microflora by shifting from the low- to the high- concentrate diet were also different between rice and oat straw.

Changes in the ruminal fermentation and bacterial community structure by a sudden change to a high-concentrate diet in Korean domestic ruminants

  • Lee, Mingyung;Jeong, Sinyong;Seo, Jakyeom;Seo, Seongwon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.1
    • /
    • pp.92-102
    • /
    • 2019
  • Objective: To investigate changes in rumen fermentation characteristics and bacterial community by a sudden change to a high concentrate diet (HC) in Korean domestic ruminants. Methods: Major Korean domestic ruminants (each of four Hanwoo cows; $545.5{\pm}33.6kg$, Holstein cows; $516.3{\pm}42.7kg$, and Korean native goats; $19.1{\pm}1.4kg$) were used in this experiment. They were housed individually and were fed ad libitum with a same TMR (800 g/kg timothy hay and 200 g/kg concentrate mix) twice daily. After two-week feeding, only the concentrate mix was offered for one week in order to induce rapid rumen acidosis. The rumen fluid was collected from each animals twice (on week 2 and week 3) at 2 h after morning feeding using an oral stomach tube. Each collected rumen fluid was analyzed for pH, volatile fatty acid (VFA), and $NH_3-N$. In addition, differences in microbial community among ruminant species and between normal and an acidosis condition were assessed using two culture-independent 16S polymerase chain reaction (PCR)-based techniques (terminal restriction fragment length polymorphism and quantitative real-time PCR). Results: The HC decreased ruminal pH and altered relative concentrations of ruminal VFA (p<0.01). Total VFA concentration increased in Holstein cows only (p<0.01). Terminal restriction fragment length polymorphism and real-time quantitative PCR analysis using culture-independent 16S PCR-based techniques, revealed rumen bacterial diversity differed by species but not by HC (p<0.01); bacterial diversity was higher in Korean native goats than that in Holstein cows. HC changed the relative populations of rumen bacterial species. Specifically, the abundance of Fibrobacter succinogenes was decreased while Lactobacillus spp. and Megasphaera elsdenii were increased (p<0.01). Conclusion: The HC altered the relative populations, but not diversity, of the ruminal bacterial community, which differed by ruminant species.

Effect of Pasture Finishing on Beef Quality of Japanese Shorthorn Steers

  • Muramoto, T.;Higashiyama, M.;Kondo, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.3
    • /
    • pp.420-426
    • /
    • 2005
  • Effect of pasture finishing on $\alpha$-tocopherol and $\beta$-carotene concentrations, drip loss, cooking loss, Warner-Bratzler shear force, fatty acid composition, meat color and metmyoglobin percentage of m. longissimus thoracis of Japanese Shorthorn steers was studied. Japanese Shorthorn steers (n=8), fattened indoors with a concentrate-based diet until they were 19 months of age were divided into two groups of four steers. Steers of the concentrate-fed group were fattened indoors with a concentrate-based diet until they were slaughtered. Steers of the pasture-fed group were fattened on pasture until they were slaughtered. The $\alpha$-tocopherol and $\beta$-carotene concentrations in the muscle of the pasture-fed group were higher (p<0.05) than those of the concentrate-fed group. The drip loss of the muscle of the pasture-fed group was lower (p<0.05) than that of the concentrate-fed group. Compared with the concentrate-fed group, the concentration of peroxidisable lipids (fatty acids with three or more unsaturated bonds) in the muscle of the pasture-fed group was high (p<0.05). The metmyoglobin percentage during display of the muscle of the pasture-fed group was higher (p<0.05) than that of the concentrate-fed group. These results suggested that pasture finishing decreased drip loss of the beef but lowered meat color stability.