• Title/Summary/Keyword: High Bypass Turbofan Engine

Search Result 15, Processing Time 0.019 seconds

Using Acoustic Liner for Fan Noise Reduction in Modern Turbofan Engines

  • Azimi, Mohammadreza;Ommi, Fathollah;Alashti, Naghmeh Jamshidi
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.97-101
    • /
    • 2014
  • With the increase in global air travel, aircraft noise has become a major public issue. In modern aircraft engines, only a small proportion of the air that passes through the whole engine actually goes through the core of the engine, the rest passes around it down the bypass duct. A successful method of reducing noise further, even in ultra-high bypass ratio engines, is to absorb the sound created within the engine. Acoustically absorbent material or acoustic liners have desirable acoustic attenuation properties and thus are commonly used to reduce noise in jet engines. The liners typically are placed upstream and downstream of the rotors (fans) to absorb sound before it propagates out of the inlet and exhaust ducts. Noise attenuation can be dramatically improved by increasing the area over which a noise reducing material is applied and by placing the material closer to the noise source. In this paper we will briefly discuss acoustic liner applications in modern turbofan engines.

Parametric Cycle Analysis of a Turbofan Engine with Turbine Cooling (터보팬 엔진에서 터빈 냉각이 성능에 미치는 영향에 대한 수치적 해석)

  • Hwang, Jin-Seok;Moon, Hee-Jang;Koo, Ja-Ye
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.1
    • /
    • pp.15-21
    • /
    • 2006
  • Parametric cycle analysis of a dual-spool, mixed exhaust turbofan engine with turbine blade cooling were described to investigate the effect of turbine blade cooling on the engine performance such as specific thrust and thrust specific fuel consumption. Coolant of low pressure turbine triggers high engine performance loss and cooling effect loss in high pressure turbine. Therefore low pressure turbine coolant should be much more considered for effective design.

  • PDF

The nonlinear fuzzy intelligent theory for high-bypass-ratio two-spool unmixed-flow jet engines

  • C.C. Hung;T. Nguyen
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.4
    • /
    • pp.369-391
    • /
    • 2023
  • In our research we have offered a solid solution for aeronautical analysis. which can guarantee the asymptotic stability of coupled nonlinear facilities. According to the theoretical solutions and methods presented, the engine of this aircraft is a small high-bypass turbofan engine. using the non-linear aero-motor control approach and this paper focuses on the power management function of the aero-motor control system. These include static controls and transient controls. A mathematical model of the high-bypass-ratio two-spool unmixed-flow aeroengine was developed through a set of nonlinear dynamic equations verified by experimental data. A single actuator using the displacement method is designed to maintain a certain level of thrust under steady-state conditions. and maintains repeatable performance during transient operation from the requested thrust phase to the next. A single controller can compensate for the effects of noise and harmonic noise at many performance points. And the dynamic performance of a single controller is satisfactory during the transient. for fairness Numerical and computer experiments are described in the perfection of the methods we offer in research.

Infrared Signal Measurement with Bypass Ratio in a Small Engine Simulating a Turbofan (터보팬을 모사한 소형 엔진에서의 바이패스 비에 따른 적외선 신호 측정)

  • Choi, Jaewon;Jang, Hyeonsik;Kim, Hyemin;Choi, Seongman
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.5
    • /
    • pp.34-42
    • /
    • 2020
  • In modern air combat, infrared signals play an important role in the detection of opponents and must be reduced to improve survivability and stealth. In particular, IR signals generated in the wake of aircraft engines have high intensity and short wavelengths, so most heat-tracking missiles detect these signals. Accordingly, the measurement and characteristic analysis of Gas radiation signals from the engine's wake were carried out in this study. Micro turbojet engine has been configured to simulate a real aircraft turbofan engine, and the characteristics of IR signal reduction by adjusting the bypass ratio were identified. Through this, the IR signal characteristics for each wavelength are analyzed and verification of signal reduction technologies is performed.

Performance Evaluation of a Thrust Reverser Using an Euler Solver (비장착 나셀의 역추력기 형상에 대한 3차원 Euler 유동해석)

  • Kim Soo Mi;Yang Soo Seok;Lee Dae Sung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.167-173
    • /
    • 1999
  • An Euler-based CFD tool has been developed for the performance evaluation of a thrust reverser mounted on a high bypass ratio turbofan engine. The computational domain surrounded by the ground and non-reflection boundary includes the whole nacelle configuration with a deployed thrust reverser. The numerical algorithm is based on the modified Godunovs scheme to allow the second order accuracy in both space and time. The grid system is generated by using eleven multi-blocks, of which the total cell number is 148,400. The thrust reverser is modeled as if it locates at the nacelle simply in all circumferential direction. The existence of a fan and an OGV(Outlet Guide Vane) is simulated by adopting the actuator disk concept, in which predetermined radial distributions of stagnation pressure ratio and adiabatic efficiency coefficient are used for the rotor type disk, and stagnation pressure losses and flow outlet angles for the stator type disk. All boundary conditions including the fan and OGV simulation are treated by Riemann solver. The developed solver is applied to a turbofan engine with a bypass ratio of about 5.7 and the diameter of the fan cowl of 83 inch. The computational results show that the Euler-based inviscid method is very useful and economical to evaluate the performance of thrust reversers.

  • PDF

The Study on Performance Model of Open Rotor Engine for Next Generation Aircraft (차세대 항공기용 Open Rotor 엔진 성능 모델 연구)

  • Choi, Won;Kim, Ji-Hong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.842-849
    • /
    • 2011
  • Open Rotor Engine is one of the several new technologies offering potential solution for the next generation aircraft. The coupling of ultra high bypass ratio and aerodynamically advanced fan blade design allow the open rotor engine to achieve and advantage in fuel consumption. The open rotor engine does have more thrust lapse than the general high bypass turbofan. The open rotor engine performance model was analyzed using a reference data based on the GE36 which was designed and tested data at which time a F404 turbojet was used as the core. The performance model of open rotor engine was verified by referred test data and was evaluated to be properly constructed, through the comparison of recent Next generation turboprop engine performance.

  • PDF

An Experimental Study of the Infrared Signal for Exhaust Plume with Bypass Ratio (바이패스비에 따른 배기가스의 적외선 신호측정 실험연구)

  • Joo, Milee;Jo, Sungpil;Choi, Seongman;Jo, Hana
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.1-9
    • /
    • 2019
  • Infrared signal and exhaust gas temperature distribution with bypass ratio were measured using a micro turbojet engine. Micro turbojet engine was modified to simulate the turbofan engine behaviour. Core flow was simulated using the jet flow of the micro turbojet engine, and high-pressure air was supplied to its external duct to simulate bypass flow. The effects of bypass ratios (0.5, 1.0, and 1.4) were examined. The experimental results indicate that the infrared signal decreases as the bypass ratio increases. And also gas temperature decreases with bypass ratios. Additionally, Schlieren visualization of the exhaust gas plume was conducted. From the exhaust gas temperature distribution and Schlieren images, the structure of jet plume with various bypass ratios was understood.

Performance Analysis of an Aircraft Gas Turbine Engine using Particle Swarm Optimization

  • Choi, Jae Won;Sung, Hong-Gye
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.4
    • /
    • pp.434-443
    • /
    • 2014
  • A turbo fan engine performance analysis and the optimization using particle swarm optimization(PSO) algorithm have been conducted to investigate the effects of major performance design parameters of an aircraft gas turbine engine. The FJ44-2C turbofan engine, which is widely used in the small business jet, CJ2 has been selected as the basic model. The design parameters consists of the bypass ratio, burner exit temperature, HP compressor ratio, fan inlet mass flow, and nozzle cooling air ratio. The sensitivity analysis of the parameters has been evaluated and the optimization of the parameters has been performed to achieve high net thrust or low specific fuel consumption.

Performance optimization control of supersonic variable cycle engines

  • Tagashira, Takeshi;Sugiyama, Nanahisa
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.779-783
    • /
    • 2004
  • First this paper introduces an advanced FADEC (Full Authority Digital Electric Control) for current and future jet engines.It is designed to realize not only stable thrust control, but also performance improvement, reliability enhancement, service life extension, etc. It can be built by using current micro-processor with high computational power and there exists no difficulties but reliability problem of the micro- processor. Next, the simulation results of SFC minimization control are shown. The target engine is a supersonic, low-bypass ratio, 2-spool, combined cycle turbofan, designated as HYPR90T, which consists of a turbo engine for under Mach 3 flight and a ram engine for over Mach 3 flight. he results can then be used for performance optimization of the engine, which plays important role in the advanced FADEC.

  • PDF

A Simple Thermal Model of Fuel Thermal Management System in Aircraft Engine

  • Youngjin Kim;Jeonghwan Jeon;Gonghoe Gimm
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.5
    • /
    • pp.11-18
    • /
    • 2023
  • The architecture of the Fuel Thermal Management System (FTMS) in a commercial aircraft engine was built to model and simulate the fuel system. The study shows the thermal interactions between the fuel and engine lubrication oil through the mission profile of a high bypass ratio, two-spool turbofan engine. Fuel temperature was monitored as it flowed through each sub-component of the fuel system during the mission. The heat load in the fuel system strongly depended on the fuel flow rate, and was significantly increased for the periods of cruise and descent with decrease of fuel flow rate, rather than for the periods of take-off. Due to the thermal interaction in the pump housing, the fuel temperature at the outlet of the low-pressure pump was increased (4.0, 9.2, and 30.0) % over the case without thermal interaction for take-off, cruise, and descent, respectively.