• Title/Summary/Keyword: High Burn-up

Search Result 80, Processing Time 0.026 seconds

A Comparative Study on Ancient Gagye on Mural Paintings in Korea and China (한국과 중국 고분벽화에 나타난 고대 가계의 비교연구)

  • Yim, Lynn
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.36 no.7
    • /
    • pp.778-789
    • /
    • 2012
  • The characteristics of ancient gagye (the cubic hair style which added wigs or other materials to hair) that appeared in mural paintings were compared between Pyongyang and Jian in Goguryeo and the midlands, the northwest region, and the northeast region in China for the same period (Han to Weijin, and Northern and Southern Dynasties). Gagye in Korea and China was classified into circle type, hat type, high-bun type, and multi-bun type; in addition, Han elements, northern race elements, Goguryeo elements, and uniqueness were compared and analyzed according to regional distribution, trend periods, and style characteristics. The Han elements of ancient gagye in Korea and China appeared in the hat type, the high-bun type, and accessories that left the hair down. The northern race elements were found in the circle type and multi-bun type. The uniqueness of Goguryeo elements included a circle from the circle type, a triangle style from the hat type, an up-do style from the high burn type, and simplified hair accessories.

Combustion Characteristics of the SOFC Products for SOFC/Gas Turbine Hybrid Power Generation System (SOFC/가스터빈 혼합발전을 위한 SOFC 생성물의 연소특성)

  • Lee, Byeong Jun;Bae, Chul Han
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.3
    • /
    • pp.44-52
    • /
    • 2014
  • Solid oxide fuel cell(SOFC) makes electric power using hydrogen or reformed from methane and emits high temperature products that contain flammable species like hydrogen, carbon monoxide and methane which varies with operation condition. SOFC/gas turbine integrated system which uses thermal and chemical energy of the discharges is more efficient than SOFC itself. Burning character of the SOFC products will affect the efficiency and stability of the system. Experiments were conducted to know the characteristics of the flame for two typical composition of SOFC products, i.e. start-up and steady state composition. When coflowing air temperature was higher than $600^{\circ}C$, auto-ignitin occurred for both fuels. Though start-up fuel has higher contents of hydrogen, it makes longer flame than steady state composition. It was inferred that the amount of oxidizer necessary to burn makes this phenomenon. Steady state composition fuel was unstable since it contains lots of water. Nozzle that had 6 holes, distance between each hole was 16.7 times of hole diameter, improved the stability of the flame.

Effect of Final Annealing and Stress on Creep Behavior of HANA Zirconium Fuel Claddings (HANA 지르코늄 핵연료피복관의 크립거동에 미치는 최종 열처리 및 응력의 영향)

  • Kim, H.G.;Kim, J.H.;Jeong, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.4
    • /
    • pp.235-241
    • /
    • 2005
  • Thermal creep properties of the advanced zirconium fuel claddings named by HANA alloys which were developed for high burn-up application were evaluated. The creep test of HANA cladding tubes was carried out by the internal pressurization method in temperature range from 350 to $400^{\circ}C$ and in the hoop stress range from 100 to 150 MPa. Creep tests were lasted up to 800 days, which showed the steady-state secondary creep rate. The creep resistance of HANA fuel claddings was affected by final annealing temperature and various factors, such as alloying element, applied stress and testing temperature. From the results the microstructure observation of the samples before and after creep test by using TEM, the dislocation density was increased in the sample of after creep test. The Sn as an alloying element was more effective in the creep resistance than other elements such as Nb, Fe, Cr and Cu due to solute hardening effect of Sn. In case of HANA fuel claddings, the improved creep resistance was obtained by the control of final heat treatment temperature as well as alloying element.

Study on the Explosion and Fire Risks of Lithium Batteries Due to High Temperature and Short Circuit Current (고온 및 단락전류에 따른 리튬배터리의 폭발 및 화재 위험성에 관한 연구)

  • Sim, Sang-Bo;Lee, Chun-Ha;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.30 no.2
    • /
    • pp.114-122
    • /
    • 2016
  • This study is to analyze the explosion and fire risks due to high temperature and short circuit current of Lithium batteries. This study selected the typical types of Li-polymer batteries and Li-ion batteries as the test samples. The result of explosion risk assessment due to the high temperature showed that, while a Li-polymer battery had $170^{\circ}C$ explosion on average, a Li-ion battery had $187^{\circ}C$ explosion. The measurement result of temperature increase due to short circuit current revealed that, in case that protection circuit module (PCM) was normally working, there was little of temperature increase due to over-current limitation. However, in case that PCM was out of order, the temperature of a Li-polymer battery increased up to an average of $115.7^{\circ}C$ and the temperature of a Li-ion battery increased up to an average of $80.5^{\circ}C$, which showed the higher risks of fire and burn.

Lean Combustion Characteristics with Hydrogen Addition in a LPG Fuelled Spark Ignition Engine (LPG엔진에서 수소연료 보조분사에 의한 희박연소특성 연구)

  • Oh, Seung-Mook;Kim, Chang-Up;Kang, Kern-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.114-120
    • /
    • 2006
  • The basic effects of hydrogen addition for engine performance and emission were investigated in single cylinder research engine. Seven commercial injectors were tested to choose a suitable injector for hydrogen injection prior to its engine implementation. The hydrogen fuel leakage and flow rate were evaluated for each injector and KN3-1(Keihin, CO.) showed the best performance for hydrogen fuel. At the higher excess air ratio(${\lambda}=1.7$, 2.0), the better combustion stability was found with hydrogen addition even though its effect was small at lower excess air ratio (${\lambda}=1.0$, 1.3). Stable operation of the engine was even guaranteed at ${\lambda}=2.0$, if the amount of hydrogen gas was near 15% of total energy. In the lean region, ${\lambda}>1.3$, thermal efficiency was improved slightly while it was not clearly observed at ${\lambda}=1.0$, 1.3. It is considered that, in some cases, high temperature environment due to hydrogen combustion caused further heat loss to surroundings. Except for ${\lambda}=1.0$, with larger amount of hydrogen addition, CO was reduced drastically but it was emitted more at the leaner region. Nitric oxides(NOx) was increased a little more with hydrogen addition at ${\lambda}=1.0$, 1.3. However, at ${\lambda}>1.3$ its relative amount of emission was low. In addition, the amount of NOx was continuously decreased with hydrogen addition, but, at ${\lambda}=2.0$ the amount of NOx was lowered to 1/100 of that of ${\lambda}=1.0$. THC emission was significantly increased as air/fuel ratio was raised to leaner region due to misfire and partial burn.

A Study on the Temperature Distribution at the Exit of Oxygen Rich Preburners (산화제 과잉 예연소기 후단 온도분포 연구)

  • Moon, Insang;Ha, Seug-Up;Lee, SunMee;Lee, Soo Yong
    • Journal of ILASS-Korea
    • /
    • v.18 no.1
    • /
    • pp.27-34
    • /
    • 2013
  • A preburner is one of the key components for a staged combustion cycle engine fueled by kerosene and Lox. Since it has oxygen rich combustion inside, temperature control is very crucial. The temperature of the exhaust gas should be low enough not to burn turbine blade and yet high to keep the efficiency high. In addition temporal and spatial deviations also managed strictly. Conventionally, the required average and maximum temperature are determined by engine system and the preburner should be developed to meet the criteria. Currently being developed preburner has 50K spatial temperature deviation requirement. It was estimated by numerical simulations and proven by tests. The numerical analysis were done with both supercritical condition and normal conditions. The tests results showed that the temperature deviations were less than expected, and the results from the test and simulations were well agreed when the supercritical conditions were considered. Above all, since the gas temperature created by the preburner is very stable with minimum deviation, the preburner developed can be used to drive a turbine and for gas-liquid combustion chambers.

Review of Spent Nuclear Fuel Dry Storage Demonstration Programs in US (미국의 사용후핵연료 건식저장 실증연구의 과거와 현재)

  • Lee, Sanghoon;Yook, Daesik
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.2
    • /
    • pp.135-149
    • /
    • 2017
  • Demonstration programs for spent nuclear fuel dry storage have been carried out to produce important and confirmatory data to support safety of dry storage systems and integrity of spent nuclear fuel stored in dry condition. The US initiated the dry storage of spent nuclear fuel and has strict and explicit regulatory stipulations on the integrity of spent nuclear fuel in dry storage. The US has carried out several notable demonstration programs for the initiation and license extension of dry storage. At the very early stage of dry storage, the demonstration programs were focused on proof of the safety of dry storage systems and a demonstration project called the dry cask storage characterization project was performed for the license extension of low burn-up fuel dry storage. Currently, a demonstration program for the license extension of high burn-up fuel dry storage is under way and is expected to continue for at least 10 years. Korea has not yet begun the dry storage of PWR fuel and the US programs can be a good reference and can provide lessons to safely begin and operate dry storage in Korea. In this paper, past and current demonstration programs of the US are analyzed and several recommendations are provided for demonstration programs for the dry storage of spent nuclear fuel in Korea.

Thermal Environments of Children's Parks during Heat Wave Period (폭염 시 어린이공원의 온열환경)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.6
    • /
    • pp.84-97
    • /
    • 2016
  • This study was to investigate the user's thermal environments of the children's parks according to pavements and sunscreen types during periods of heat waves. The measurements were conducted at the sand pits, rubber chip pavement, shelters, and green shade ground of the two children's parks located in Jinju, Korea(Chilam: $N\;35^{\circ}11^{\prime}1.4{^{\prime}^{\prim}}$, $E\;128^{\circ}5^{\prime}31.7{^{\prime}^{\prime}}$, elevation 38m, Gaho: $N\;35^{\circ}09^{\prime}56.8{^{\prime}^{\prime}}$, $E\;128^{\circ}6^{\prime}41.1{^{\prime}^{\prime}}$, elevation 24m) over three days during 11-13, August, 2016. The highest ambient air temperatures at the Jinju Meteorological Office during the three measurement days were $35.9{\sim}36.8^{\circ}C$, which corresponded with the extremely hot weather. A series of experiments measured air temperature, relative humidity, wind velocity, black globe temperature, and long-wave and short-wave radiation of the six directions 0.6 m above ground level. The wet bulb globe temperature(WBGT) and the universal thermal climatic index(UTCI) were used to evaluate thermal stress. Surface temperature images of the play equipment were also taken using infrared thermography. Surface temperatures of the play equipment and grounds were used to evaluate burn risk through contact with playground materials. The results showed the following. The maximum air temperatures averaged over 1-hour period for three days were $36.6{\sim}39.4^{\circ}C$. The sun shades reduced those temperatures by up to $2.8^{\circ}C$(green shade) and $1.0^{\circ}C/2.3^{\circ}C$(shelters). The minimum relative humidity values averaged over 1-hour period for three days were 44~50%. The sun shades increased those humidity values by up to 6%(green shade) and 4%/6%(shelters). The risk of heat related illness at the measurement sites of the children's parks were extreme and high in the daytime hours. The maximum WBGT values averaged over a 30-minute period for three days were $31.2{\sim}33.6^{\circ}C$. The sun shades reduced those WBGT values by up to $2.4^{\circ}C$(green shade) and $0.5^{\circ}C/2.1^{\circ}C$(shelters) compared to sandpits, but would not block the risk of heat related illness in the daytime hours. The category of heat stress at the measurement sites of the children's parks were extreme and very strong in the daytime hours. The maximum UTCI values averaged over a 30-minute period for three days were $39.9{\sim}48.1^{\circ}C$. The sun shades reduced those UTCI values by up to $7.8^{\circ}C$(green shade) and $4.1^{\circ}C/8.2^{\circ}C$(shelters) compared to sandpits, but could not lower heat stress category from extreme and very strong to strong and moderate in the daytime hours. According to the burn threshold criteria when skin was in contact with playground materials, the maximum surface temperature of the stainless steels($70.8^{\circ}C$) surpassed three seconds $60^{\circ}C$ threshold for uncoated steel, that of the rubber chip($76.5^{\circ}C$) surpassed five seconds $74^{\circ}C$ threshold for the plastic, that of the plastic slide($68.5^{\circ}C$) and seats($71.0^{\circ}C$) surpassed the one min $60^{\circ}C$ threshold for plastic, respectively. The surface temperatures of shaded play equipment were lower approximately $20^{\circ}C$ than those of play equipment exposed to the sun. Therefore, sun shades can block the risk of burns in daytime hours. Because of the extreme and high risk of heat related illness and extreme and high heat stress at the children's parks during periods of heat waves, parents and administrators must protect children from the use of playgrounds. The risk of burn when contact with play equipments and grounds at the children's parks during periods of heat waves, was very high. The sun shades are essential to block the risk of burn from play equipments and grounds at the children's parks during heat waves.

Oxygen Permeation and Hydrogen Production of BaCo1-x-yFexZryO3-δ by a Modified Glycine-nitrate Process (MGNP) (Modified glycine-nitrate process(MGNP)로 합성한 BaCo1-x-yFexZryO3-δ 산소투과도 및 수소생산성)

  • Yi, Eunjeong;Hwang, Haejin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • A dense mixed ionic and electronic conducting ceramic membrane is one of the most promising materials because it can be used for separation of oxygen from the mixture gas. The $ABO_3$ perovskite structure shows high chemical stability at high temperatures under reduction and oxidation atmospheres. $BaCo_{1-x-y}Fe_xZr_yO_{3-{\delta}}$ (BCFZ) was well-known material as high mechanical strength, low thermal conductivity and stability in the high valence state. Glycine Nitrate Process (GNP) is rapid and effective method for powder synthesis using glycine as a fuel and show higher product crystallinity compared to solid state reaction and citrate-EDTA method. BCFZ was fabricated by modified glycine nitrate process. In order to control the burn-up reaction, $NH_4NO_3$ was used as extra nitrate. According to X-Ray Diffraction (XRD) results, BCFZ was single phase regardless of Zr dopants from y=0.1 to 0.3 on B sites. The green compacts were sintered at $1200^{\circ}C$ for 2 hours. Oxygen permeability, methane partial oxidation rate and hydrogen production ability of the membranes were characterized by using Micro Gas Chromatography (Micro GC) under various condition. The high oxygen permeation flux of BCFZ 1-451 was about $1ml{\cdot}cm^{-2}s^{-1}$. Using the humidified Argon gas, BCFZ 1-433 produced hydrogen about $1ml{\cdot}cm^{-2}s^{-1}$.

On the effect of filters for the design of solid propellant gas generators (고체추진제 가스발생기 설계를 위한 필터 효과에 대한 고찰)

  • Hong, Moon-Geun;Lee, Soo-Yong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2524-2527
    • /
    • 2007
  • Solid propellant gas generators (SPGG) play a role as a turbopump starter in liquid propellant propulsion systems by supplying pressurized gas to power turbines for engine start. For such a purpose, the propellants should burn with a relative low flame temperature and the combustion gas should not contain corrosive constituents such as chlorine compounds. In accordance with these requirements, stabilized AN-based propellants have been usually used as the most appropriate oxidizer for propellant compositions. However, the burning area of the propellant intends to increase to satisfy the required mass flux because of its low burning rate. Consequently the burning area incensement brings on the SPGG size augmentation. A flow restriction such as filters is applied to decrease the SPGG size by rising up the combustion pressure resulting in increasing the burning rate. The feasibility of the size reduction of SPGG by the employment of filters have been studied. The preliminary results of this study show that the considerable reduction of SPGG size would be achievable just by installing a filter with relatively high pressure loss coefficient.

  • PDF