• Title/Summary/Keyword: High Altitude Platforms

Search Result 12, Processing Time 0.023 seconds

An Efficient E-learning and Internet Service Provision for Rural Areas Using High-Altitude Platforms during COVID-19 Pan-Demic

  • Sameer Alsharif;Rashid A. Saeed;Yasser Albagory
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.71-82
    • /
    • 2024
  • This paper proposes a new communication system for e-learning applications to mitigate the negative impacts of COVID-19 where the online massive demands impact the current commu-nications systems infrastructures and capabilities. The proposed system utilizes high-altitude platforms (HAPs) for fast and efficient connectivity provision to bridge the communication in-frastructure gap in the current pandemic. The system model is investigated, and its performance is analyzed using adaptive antenna arrays to achieve high quality and high transmission data rates at the student premises. In addition, the single beam and multibeam HAP radio coverage scenarios are examined using tapered uniform concentric circular arrays to achieve feasible communication link requirements.

A New Methodology for Estimating the Impact of Co-Channel Interference from High-Altitude Platforms to Terrestrial Systems

  • Milas Vasilis F.;Constantinou Philip
    • Journal of Communications and Networks
    • /
    • v.8 no.2
    • /
    • pp.175-181
    • /
    • 2006
  • This paper addresses an in-depth analysis of the stratosphere-to-Earth co-channel interference produced by high-altitude platforms (HAPs) and proposes a new methodology for the evaluation of its impact to terrestrial systems in terms of fractional degradation in performance, taking into account parameters such as HAP's mobility, realistic distribution of azimuth and elevation angles of the terrestrial microwave links (TMLs), and gradual high-altitude platform network (HAPN) loading. Simulations performed for different HAPN configurations, prove that the implementation of the methodology proposed, may lead to a more efficient use of the spectrum shared between the two services.

Effect of Antenna Aperture Field on Co-channel Interference, Capacity, and Payload Mass in High Altitude Platform Communications

  • Thornton, John;Grace, David
    • ETRI Journal
    • /
    • v.26 no.5
    • /
    • pp.467-474
    • /
    • 2004
  • In a High Altitude Platform (HAP) cellular communications network, each cell may be served by a dedicated spot-beam antenna. The antennas' beam properties and their spatial overlap control the co-channel interference. In prior literature, radiation patterns have been approximated by a main lobe followed by a constant sidelobe floor. A network of 121 cells has been studied and the method is here extended to the use of more realistic radiation patterns based on the theoretical aperture antenna patterns. This allows for the comparison of the effect of different aperture field tapers, which lead to reduced sidelobe levels and hence higher system capacity but also a more massive antenna payload.

  • PDF

Marine Terrace of the Jinha-Ilgwang Area, Southeast Korea (진하-일광 지역의 해안 단구)

  • 최성자
    • Economic and Environmental Geology
    • /
    • v.36 no.3
    • /
    • pp.233-242
    • /
    • 2003
  • The southeasternmost coastal area of the Korean peninsula has been regarded as a seismologically stable area as neither Quaternary faults nor earthquake activity has been reported. To clarify whether the active tectonic movement has occurred or not, a digital marine terrace mapping and fracture mapping have been done in the coastal area. Bed rocks are composed of the Cretaceous volcanic and sedimentary rocks and the Paleogene granite. Wave-cut platform in the area is smaller and narrower relative to that of the northern coastal area. Most of the platforms in the area have little Quaternary sediment. The platforms except the Holocene terrace (1 st terrace) can be divided into three steps. The lowest platform (2nd terrace) has an altitude of 8-11 m. The broad middle one (3rd terrace) is 17 to 22 m high. The highest terrace (4th terrace) is a narrow and sporadic bench with an altitude of about 44 m high. The lowest terrace is correlated to the 2nd terrace of the northern area, which corresponds to the oxygen isotopic stage 5a. The uplift rate calculated from a graphic method is 0.19 m/ky. This low uplift is typical of an intra-plate, suggesting that the area is tectonically stable. The elevation of the platforms tends slightly lower from the north to the south in the survey area. The decreasing altitude of the platforms towards the south is interpreted to result from a local block tilting during the Latest Pleistocene. This also indicates that the eastern coast of the Korean peninsula has been suffering a subsidence to the south.

Dimensioning a Retro-Directive Array for Communications via a Stratospheric Platform

  • Thornton, John
    • ETRI Journal
    • /
    • v.24 no.2
    • /
    • pp.153-160
    • /
    • 2002
  • High Altitude Platforms-craft maintaining stations in the stratosphere at altitudes of around 20 km-have been proposed as a means of supporting wireless telecommunications. They could exploit the best aspects of both terrestrial and satellite systems and support efficient frequency re-use plans. For solar powered platforms the power available for the downlink amplifiers may be minimal, particularly at night and/or higher latitudes. This paper discusses a novel type of link based on a modulated retro-directive transponder carried by the HAP. Relying chiefly on the ground station infrastructure, this would substantially reduce power consumption on the platform. We investigate the efficiency of the transponder aperture as a function of its area by developing general models for losses in the transmission lines which interconnect antenna pairs in the retro-directive array.

  • PDF

A Study on the Outage Probability of Mobile Communication System using HAPS (HAPS를 이용한 이동통신 시스템의 오수신 확률에 관한 연구)

  • 김혜영;고봉진;박무훈
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.4B
    • /
    • pp.275-280
    • /
    • 2002
  • Wireless communications have been developed time and time to satisfy more demands of users for internet service, mobile communication service and so on. One of infrastructures leading the next generation wireless communication is HAPS(High Altitude Platform Station). This paper analyzed outage probability when a mobile communication system was constructed by using HAPS. First, an approach to evaluate the carrier to interference power ratio' was introduced and results from the analysis were calculated and simulated. from the results, carrier to interference power ratio (C/I) and fading depth (K) had an effect on outage probability; outage probability decreases when K increases far constant C/I or C/l increases for constant K. In addition, when outage probability for a platform with elevation 30 degrees is expanded into it for 24-platforms, outage probability(C/I=9.8dB) was worse because of many interferers relatively.

Volume-sharing Multi-aperture Imaging (VMAI): A Potential Approach for Volume Reduction for Space-borne Imagers

  • Jun Ho Lee;Seok Gi Han;Do Hee Kim;Seokyoung Ju;Tae Kyung Lee;Chang Hoon Song;Myoungjoo Kang;Seonghui Kim;Seohyun Seong
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.545-556
    • /
    • 2023
  • This paper introduces volume-sharing multi-aperture imaging (VMAI), a potential approach proposed for volume reduction in space-borne imagers, with the aim of achieving high-resolution ground spatial imagery using deep learning methods, with reduced volume compared to conventional approaches. As an intermediate step in the VMAI payload development, we present a phase-1 design targeting a 1-meter ground sampling distance (GSD) at 500 km altitude. Although its optical imaging capability does not surpass conventional approaches, it remains attractive for specific applications on small satellite platforms, particularly surveillance missions. The design integrates one wide-field and three narrow-field cameras with volume sharing and no optical interference. Capturing independent images from the four cameras, the payload emulates a large circular aperture to address diffraction and synthesizes high-resolution images using deep learning. Computational simulations validated the VMAI approach, while addressing challenges like lower signal-to-noise (SNR) values resulting from aperture segmentation. Future work will focus on further reducing the volume and refining SNR management.

6G in the sky: On-demand intelligence at the edge of 3D networks (Invited paper)

  • Strinati, Emilio Calvanese;Barbarossa, Sergio;Choi, Taesang;Pietrabissa, Antonio;Giuseppi, Alessandro;De Santis, Emanuele;Vidal, Josep;Becvar, Zdenek;Haustein, Thomas;Cassiau, Nicolas;Costanzo, Francesca;Kim, Junhyeong;Kim, Ilgyu
    • ETRI Journal
    • /
    • v.42 no.5
    • /
    • pp.643-657
    • /
    • 2020
  • Sixth generation will exploit satellite, aerial, and terrestrial platforms jointly to improve radio access capability and unlock the support of on-demand edge cloud services in three-dimensional (3D) space, by incorporating mobile edge computing (MEC) functionalities on aerial platforms and low-orbit satellites. This will extend the MEC support to devices and network elements in the sky and forge a space-borne MEC, enabling intelligent, personalized, and distributed on-demand services. End users will experience the impression of being surrounded by a distributed computer, fulfilling their requests with apparently zero latency. In this paper, we consider an architecture that provides communication, computation, and caching (C3) services on demand, anytime, and everywhere in 3D space, integrating conventional ground (terrestrial) base stations and flying (non-terrestrial) nodes. Given the complexity of the overall network, the C3 resources and management of aerial devices need to be jointly orchestrated via artificial intelligence-based algorithms, exploiting virtualized network functions dynamically deployed in a distributed manner across terrestrial and non-terrestrial nodes.

Design of the Automatic Flight and Guidance Controller for 50m Unmanned Airship Platform

  • Lee, Sang-Jong;Kim, Seong-Pil;Kim, Tae-Sik;Kim, Dong-Min;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.64-75
    • /
    • 2005
  • The Stratospheric Airship Platform (SAP) has a capability of performing the autonomous and guidance flight to satisfy given missions. To be used as the High Altitude Platforms (HAPs), the capabilities of controlling platform's accurate position and keeping the station point are the most important features. Under this circumstances Autonomous Flight Control System (AFCS) is a critical system and plays a key role in achieving the given requirements and succeeding in missions. In this paper, the design and analysis results of the AFCS algorithms and controller are presented. The brief summary of the AFCS hardware structure is also explained. The autopilot controller and guidance logics were designed based on the linear dynamics of the unmanned airship platform and the full nonlinear dynamics was considered to evaluate and verify their performances.

Throughput and Delay of Single-Hop and Two-Hop Aeronautical Communication Networks

  • Wang, Yufeng;Erturk, Mustafa Cenk;Liu, Jinxing;Ra, In-ho;Sankar, Ravi;Morgera, Salvatore
    • Journal of Communications and Networks
    • /
    • v.17 no.1
    • /
    • pp.58-66
    • /
    • 2015
  • Aeronautical communication networks (ACN) is an emerging concept in which aeronautical stations (AS) are considered as a part of multi-tier network for the future wireless communication system. An AS could be a commercial plane, helicopter, or any other low orbit station, i.e., Unmanned air vehicle, high altitude platform. The goal of ACN is to provide high throughput and cost effective communication network for aeronautical applications (i.e., Air traffic control (ATC), air traffic management (ATM) communications, and commercial in-flight Internet activities), and terrestrial networks by using aeronautical platforms as a backbone. In this paper, we investigate the issues about connectivity, throughput, and delay in ACN. First, topology of ACN is presented as a simple mobile ad hoc network and connectivity analysis is provided. Then, by using information obtained from connectivity analysis, we investigate two communication models, i.e., single-hop and two-hop, in which each source AS is communicating with its destination AS with or without the help of intermediate relay AS, respectively. In our throughput analysis, we use the method of finding the maximum number of concurrent successful transmissions to derive ACN throughput upper bounds for the two communication models. We conclude that the two-hop model achieves greater throughput scaling than the single-hop model for ACN and multi-hop models cannot achieve better throughput scaling than two-hop model. Furthermore, since delay issue is more salient in two-hop communication, we characterize the delay performance and derive the closed-form average end-to-end delay for the two-hop model. Finally, computer simulations are performed and it is shown that ACN is robust in terms of throughput and delay performances.