• 제목/요약/키워드: Hierarchical neural network

검색결과 128건 처리시간 0.02초

계층구조 접근에 의한 복합시스템 고장진단 기법 (Fault Diagnosis Method of Complex System by Hierarchical Structure Approach)

  • 배용환;이석희
    • 한국정밀공학회지
    • /
    • 제14권11호
    • /
    • pp.135-146
    • /
    • 1997
  • This paper describes fault diagnosis method in complex system with hierachical structure similar to human body structure. Complex system is divided into unit, item and component. For diagnosing this hierarchical complex system, it is necessary to implement special neural network. Fault diagnosis system can forecast faults in a system and decide from current machine state signal information. Comparing with other diagnosis system for single fault, the developed system deals with multiple fault diagnosis comprising Hierarchical Neural Network(HNN). HNN consists of four level neural network, first level for item fault symptom classification, second level for item fault diagnosis, third level for component symptom classification, forth level for component fault diagnosis. UNIX IPC(Inter Process Communication) is used for implementing HNN wiht multitasking and message transfer between processes in SUN workstation with X-Windows(Motif). We tested HNN at four units, seven items per unit, seven components per item in a complex system. Each one neural newtork operate as a separate process in HNN. The message queue take charge of information exdhange and cooperation between each neural network.

  • PDF

CIM 구축을 위한 지능형 고장진단 시스템 개발 (Development of Intelligent Fault Diagnosis System for CIM)

  • 배용환;오상엽
    • 한국산업융합학회 논문집
    • /
    • 제7권2호
    • /
    • pp.199-205
    • /
    • 2004
  • This paper describes the fault diagnosis method to order to construct CIM in complex system with hierarchical structure similar to human body structure. Complex system is divided into unit, item and component. For diagnosing this hierarchical complex system, it is necessary to implement a special neural network. Fault diagnosis system can forecast faults in a system and decide from the signal information of current machine state. Comparing with other diagnosis system for a single fault, the developed system deals with multiple fault diagnosis, comprising hierarchical neural network (HNN). HNN consists of four level neural network, i.e. first is fault symptom classification and second fault diagnosis for item, third is symptom classification and forth fault diagnosis for component. UNIX IPC is used for implementing HNN with multitasking and message transfer between processes in SUN workstation with X-Windows (Motif). We tested HNN at four units, seven items per unit, seven components per item in a complex system. Each one neural network represents a separate process in UNIX operating system, information exchanging and cooperating between each neural network was done by message queue.

  • PDF

Unification of neural network with a hierarchical pattern recognition

  • Park, Chang-Mock;Wang, Gi-Nam
    • 대한인간공학회:학술대회논문집
    • /
    • 대한인간공학회 1996년도 추계학술대회논문집
    • /
    • pp.197-205
    • /
    • 1996
  • Unification of neural network with a hierarchical pattern recognition is presented for recognizing large set of objects. A two-step identification procedure is developed for pattern recognition: coarse and fine identification. The coarse identification is designed for finding a class of object while the fine identification procedure is to identify a specific object. During the training phase a course neural network is trained for clustering larger set of reference objects into a number of groups. For training a fine neural network, expert neural network is also trained to identify a specific object within a group. The presented idea can be interpreted as two step identification. Experimental results are given to verify the proposed methodology.

  • PDF

계층적 CNN을 이용한 방송 매체 내의 객체 인식 시스템 성능향상 방안 (Performance Improvement of Object Recognition System in Broadcast Media Using Hierarchical CNN)

  • 권명규;양효식
    • 디지털융복합연구
    • /
    • 제15권3호
    • /
    • pp.201-209
    • /
    • 2017
  • 본 논문은 계층적 Convolutional Nerual Network(CNN)을 이용한 스마트폰용 객체 인식 시스템이다. 전체적인 구성은 스마트폰과 서버를 연결하여 서버에서 컨볼루셔널 뉴럴 네트워크로 객체 인식을 하고 수집된 데이터를 매칭시켜 스마트폰으로 객체의 상세정보를 전달하는 방법이다. 또한 계층적 컨볼루셔널 뉴럴 네트워크와 단편적 컨볼루셔널 뉴럴 네트워크와 비교하였다. 계층적 컨볼루셔널 뉴럴 네트워크는 88%, 단편적 컨볼루셔널 뉴럴 네트워크는 73%의 정확도를 가지며 15%p의 성능 향상을 보였다. 이를 기반으로 스마트폰과 방송매체와 연동한 T-Commerce 시장 확장의 가능성을 보여준다. 아울러 방송영상을 시청하면서 Information Retrieval, AR/VR 서비스도 제공 가능하다.

병렬 자구성 계층 신경망 (PSHINN)의 구조 (Architectures of the Parallel, Self-Organizing Hierarchical Neural Networks)

  • 윤영우;문태현;홍대식;강창언
    • 전자공학회논문지B
    • /
    • 제31B권1호
    • /
    • pp.88-98
    • /
    • 1994
  • A new neural network architecture called the Parallel. Self-Organizing Hierarchical Neural Network (PSHNN) is presented. The new architecture involves a number of stages in which each stage can be a particular neural network (SNN). The experiments performed in comparison to multi-layered network with backpropagation training and indicated the superiority of the new architecture in the sense of classification accuracy, training time,parallelism.

  • PDF

계층 구조의 신경회로망에 의한 로보트 PTP 궤적 계획 (Robot PTP Trajectory Planning Using a Hierarchical Neural Network Structure)

  • 경계현;고명삼;이범희
    • 대한전기학회논문지
    • /
    • 제39권10호
    • /
    • pp.1121-1232
    • /
    • 1990
  • A hierarchical neural network structure is described for robot PTP trajectory planning. In the first level, the multi-layered Perceptron neural network is used for the inverse kinematics with the back-propagation learning procedure. In the second level, a saccade generation model based joint trajectory planning model in proposed and analyzed with several features. Various simulations are performed to investigate the characteristics of the proposed neural networks.

  • PDF

계층적 신경회로망을 이용한 후두질환 감별 분류기 (Implementation on the Classifier for Differential Diagnosis of Laryngeal Disease using Hierarchical Neural Network)

  • 김경태;김길중;전계록
    • 한국정보통신학회논문지
    • /
    • 제6권1호
    • /
    • pp.76-82
    • /
    • 2002
  • 본 연구에서는 계층적 신경회로망을 사용하여 정상, 후두질환(polyp, nodule, palsy 등), 후두질환 중 성문암 시기별 감별진단이 가능한 후두질환 감별진단 분류기를 구현하였다. 후두질환을 가진 환자군과 정상군, 그리고 성문암의 각 시기별에 해당되는 환자군으로부터 /a/, /e/, /i/, /o/, /u/ 모음에 따른 분류작업을 수행하였다. 각 모음별 분류 실험을 수행한 결과 모든 입력 파라미터에 대해서 /a/모음이 다른 모음에 비해 우수한 분류율을 나타내므로, /a/모음만을 사용하여 후두질환을 감별진단하기 위한 계층적 신경회로망을 구현하였다. 구현된 계층적 신경회로망은 각 계층별로 서로 다른 파라미터들을 적용하여 여러 후두질환을 감별진단하도록 구성되었다.

계층적 Hopfield 신경 회로망을 이용한 Optical Flow 추정 (Optical Flow Estimation Using the Hierarchical Hopfield Neural Networks)

  • 김문갑;진성일
    • 전자공학회논문지B
    • /
    • 제32B권3호
    • /
    • pp.48-56
    • /
    • 1995
  • This paper presents a method of implementing efficient optical flow estimation for dynamic scene analysis using the hierarchical Hopfield neural networks. Given the two consequent inages, Zhou and Chellappa suggested the Hopfield neural network for computing the optical flow. The major problem of this algorithm is that Zhou and Chellappa's network accompanies self-feedback term, which forces them to check the energy change every iteration and only to accept the case where the lower the energy level is guaranteed. This is not only undesirable but also inefficient in implementing the Hopfield network. The another problem is that this model cannot allow the exact computation of optical flow in the case that the disparities of the moving objects are large. This paper improves the Zhou and Chellapa's problems by modifying the structure of the network to satisfy the convergence condition of the Hopfield model and suggesting the hierarchical algorithm, which enables the computation of the optical flow using the hierarchical structure even in the presence of large disparities.

  • PDF

Expert Network의 모듈형 계층구조를 이용한 범용 연산회로 설계 (General Purpose Operation Unit Using Modular Hierarchical Structure of Expert Network)

  • 양정모;홍광진;조현찬;서재용;전홍태
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 추계 학술대회 학술발표 논문집
    • /
    • pp.122-125
    • /
    • 2003
  • By advent of NNC(Neural Network Chip), it is possible that process in parallel and discern the importance of signal with learning oneself by experience in external signal. So, the design of general purpose operation unit using VHDL(VHSIC Hardware Description Language) on the existing FPGA(Field Programmable Gate Array) can replaced EN(Expert Network) and learning algorithm. Also, neural network operation unit is possible various operation using learning of NN(Neural Network). This paper present general purpose operation unit using hierarchical structure of EN EN of presented structure learn from logical gate which constitute a operation unit, it relocated several layer The overall structure is hierarchical using a module, it has generality more than FPGA operation unit.

  • PDF

모듈신경망을 이용한 다중고장 진단기법 (Multiple Fault Diagnosis Method by Modular Artificial Neural Network)

  • 배용환;이석희
    • 한국정밀공학회지
    • /
    • 제15권2호
    • /
    • pp.35-44
    • /
    • 1998
  • This paper describes multiple fault diagnosis method in complex system with hierarchical structure. Complex system is divided into subsystem, item and component. For diagnosing this hierarchical complex system, it is necessary to implement special neural network. We introduced Modular Artificial Neural Network(MANN) for this purpose. MANN consists of four level neural network, first level for symptom classification, second level for item fault diagnosis, third level for component symptom classification, forth level for component fault diagnosis. Each network is multi layer perceptron with 7 inputs, 30 hidden node and 7 outputs trained by backpropagation. UNIX IPC(Inter Process Communication) is used for implementing MANN with multitasking and message transfer between processes in SUN workstation. We tested MANN in reactor system.

  • PDF