• Title/Summary/Keyword: Hierarchical likelihood

Search Result 87, Processing Time 0.034 seconds

Analysis of multi-center bladder cancer survival data using variable-selection method of multi-level frailty models (다수준 프레일티모형 변수선택법을 이용한 다기관 방광암 생존자료분석)

  • Kim, Bohyeon;Ha, Il Do;Lee, Donghwan
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.2
    • /
    • pp.499-510
    • /
    • 2016
  • It is very important to select relevant variables in regression models for survival analysis. In this paper, we introduce a penalized variable-selection procedure in multi-level frailty models based on the "frailtyHL" R package (Ha et al., 2012). Here, the estimation procedure of models is based on the penalized hierarchical likelihood, and three penalty functions (LASSO, SCAD and HL) are considered. The proposed methods are illustrated with multi-country/multi-center bladder cancer survival data from the EORTC in Belgium. We compare the results of three variable-selection methods and discuss their advantages and disadvantages. In particular, the results of data analysis showed that the SCAD and HL methods select well important variables than in the LASSO method.

Analysis of internet addiction in Korean adolescents using sparse partial least-squares regression (희소 부분 최소 제곱법을 이용한 우리나라 청소년 인터넷 중독 자료 분석)

  • Han, Jeongseop;Park, Soobin;Lee, onghwan
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.2
    • /
    • pp.253-263
    • /
    • 2018
  • Internet addiction in adolescents is an important social issue. In this study, sparse partial least-squares regression (SPLS) was applied to internet addiction data in Korean adolescent samples. The internet addiction score and various clinical and psychopathological features were collected and analyzed from self-reported questionnaires. We considered three PLS methods and compared the performance in terms of prediction and sparsity. We found that the SPLS method with the hierarchical likelihood penalty was the best; in addition, two aggression features, AQ and BSAS, are important to discriminate and explain latent features of the SPLS model.

Successive MAP Detection with Soft Interference Cancellation for Iterative Receivers in Hierarchical M-ary QAM Systems (M-레벨 QAM 계층 변조 시스템에서 연 간섭 제거를 이용한 연속 MAP 판정 기법)

  • Kim, Jong-Kyung;Seo, Jong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3C
    • /
    • pp.304-310
    • /
    • 2009
  • This paper proposes a successive MAP (maximum a posteriori probability) detection scheme with SoIC(soft interference cancellation) to reduce the receiver complexity of hierarchical M-ary QAM system. For the successive MAP detection, modulation symbols generated from the other data streams are treated as Gaussian noise or eliminated as the soft interference according to their priorities. The log-likelihood ratio of the a posteriori probability (LAPRP) of each bit is calculated by the MAP detector with an adjusted noise variance in order to take the elimination and Gaussian assumption effect into account. By separating the detection process into the successive steps, the detection complexity is reduced to increase linearly with the number of bits per hierarchical M-ary QAM symbol. Simulation results show that the proposed detection provides a small performance degradation as compared to the optimal MAP detection.

Bayesian methods in clinical trials with applications to medical devices

  • Campbell, Gregory
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.6
    • /
    • pp.561-581
    • /
    • 2017
  • Bayesian statistics can play a key role in the design and analysis of clinical trials and this has been demonstrated for medical device trials. By 1995 Bayesian statistics had been well developed and the revolution in computing powers and Markov chain Monte Carlo development made calculation of posterior distributions within computational reach. The Food and Drug Administration (FDA) initiative of Bayesian statistics in medical device clinical trials, which began almost 20 years ago, is reviewed in detail along with some of the key decisions that were made along the way. Both Bayesian hierarchical modeling using data from previous studies and Bayesian adaptive designs, usually with a non-informative prior, are discussed. The leveraging of prior study data has been accomplished through Bayesian hierarchical modeling. An enormous advantage of Bayesian adaptive designs is achieved when it is accompanied by modeling of the primary endpoint to produce the predictive posterior distribution. Simulations are crucial to providing the operating characteristics of the Bayesian design, especially for a complex adaptive design. The 2010 FDA Bayesian guidance for medical device trials addressed both approaches as well as exchangeability, Type I error, and sample size. Treatment response adaptive randomization using the famous extracorporeal membrane oxygenation example is discussed. An interesting real example of a Bayesian analysis using a failed trial with an interesting subgroup as prior information is presented. The implications of the likelihood principle are considered. A recent exciting area using Bayesian hierarchical modeling has been the pediatric extrapolation using adult data in clinical trials. Historical control information from previous trials is an underused area that lends itself easily to Bayesian methods. The future including recent trends, decision theoretic trials, Bayesian benefit-risk, virtual patients, and the appalling lack of penetration of Bayesian clinical trials in the medical literature are discussed.

Hierarchical Flow-Based Anomaly Detection Model for Motor Gearbox Defect Detection

  • Younghwa Lee;Il-Sik Chang;Suseong Oh;Youngjin Nam;Youngteuk Chae;Geonyoung Choi;Gooman Park
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1516-1529
    • /
    • 2023
  • In this paper, a motor gearbox fault-detection system based on a hierarchical flow-based model is proposed. The proposed system is used for the anomaly detection of a motion sound-based actuator module. The proposed flow-based model, which is a generative model, learns by directly modeling a data distribution function. As the objective function is the maximum likelihood value of the input data, the training is stable and simple to use for anomaly detection. The operation sound of a car's side-view mirror motor is converted into a Mel-spectrogram image, consisting of a folding signal and an unfolding signal, and used as training data in this experiment. The proposed system is composed of an encoder and a decoder. The data extracted from the layer of the pretrained feature extractor are used as the decoder input data in the encoder. This information is used in the decoder by performing an interlayer cross-scale convolution operation. The experimental results indicate that the context information of various dimensions extracted from the interlayer hierarchical data improves the defect detection accuracy. This paper is notable because it uses acoustic data and a normalizing flow model to detect outliers based on the features of experimental data.

Semiparametric Approach to Logistic Model with Random Intercept (준모수적 방법을 이용한 랜덤 절편 로지스틱 모형 분석)

  • Kim, Mijeong
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.6
    • /
    • pp.1121-1131
    • /
    • 2015
  • Logistic models with a random intercept are useful to analyze longitudinal binary data. Traditionally, the random intercept of the logistic model is assumed to be parametric (such as normal distribution) and is also assumed to be independent to variables. Such assumptions are very strong and restricted for application to real data. Recently, Garcia and Ma (2015) derived semiparametric efficient estimators for logistic model with a random intercept without these assumptions. Their estimator shows the consistency where we do not assume any parametric form for the random intercept. In addition, the method is computationally simple. In this paper, we apply this method to analyze toenail infection data. We compare the semiparametric estimator with maximum likelihood estimator, penalized quasi-likelihood estimator and hierarchical generalized linear estimator.

Variational Mode Decomposition with Missing Data (결측치가 있는 자료에서의 변동모드분해법)

  • Choi, Guebin;Oh, Hee-Seok;Lee, Youngjo;Kim, Donghoh;Yu, Kyungsang
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.159-174
    • /
    • 2015
  • Dragomiretskiy and Zosso (2014) developed a new decomposition method, termed variational mode decomposition (VMD), which is efficient for handling the tone detection and separation of signals. However, VMD may be inefficient in the presence of missing data since it is based on a fast Fourier transform (FFT) algorithm. To overcome this problem, we propose a new approach based on a novel combination of VMD and hierarchical (or h)-likelihood method. The h-likelihood provides an effective imputation methodology for missing data when VMD decomposes the signal into several meaningful modes. A simulation study and real data analysis demonstrates that the proposed method can produce substantially effective results.

Penalized variable selection in mean-variance accelerated failure time models (평균-분산 가속화 실패시간 모형에서 벌점화 변수선택)

  • Kwon, Ji Hoon;Ha, Il Do
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.411-425
    • /
    • 2021
  • Accelerated failure time (AFT) model represents a linear relationship between the log-survival time and covariates. We are interested in the inference of covariate's effect affecting the variation of survival times in the AFT model. Thus, we need to model the variance as well as the mean of survival times. We call the resulting model mean and variance AFT (MV-AFT) model. In this paper, we propose a variable selection procedure of regression parameters of mean and variance in MV-AFT model using penalized likelihood function. For the variable selection, we study four penalty functions, i.e. least absolute shrinkage and selection operator (LASSO), adaptive lasso (ALASSO), smoothly clipped absolute deviation (SCAD) and hierarchical likelihood (HL). With this procedure we can select important covariates and estimate the regression parameters at the same time. The performance of the proposed method is evaluated using simulation studies. The proposed method is illustrated with a clinical example dataset.

New Hierarchical Modulation Scheme Using a Constellation Rotation Method (성상회전 변조기법을 이용한 새로운 계층변조 기법)

  • Kim, Hojun;Shang, Yulong;Park, Jaehyung;Jung, Taejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.1
    • /
    • pp.66-76
    • /
    • 2016
  • In this paper, we propose a new hierarchical modulation scheme for DVB-NGH to improve the performance of LP (Low-Parity) signals by applying a conventional constellation-rotation method to the LP signals without virtually a loss of performance of a HP (High-Parity) signals. The improvement of the LP signals is mainly due to the increased divesity gain caused by the constellation-rotation method which barely affect the performance of the HP signals. For the new scheme, we also propose a hardware-efficient ML (Maximum-Likelihood) detection algorithm that first decodes the HP signals by using a conventional HP receiver, and then simply decodes the precoded LP signals based on the pre-detected HP signals.

Empirical Comparisons of Disparity Measures for Three Dimensional Log-Linear Models

  • Park, Y.S.;Hong, C.S.;Jeong, D.B.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.543-557
    • /
    • 2006
  • This paper is concerned with the applicability of the chi-square approximation to the six disparity statistics: the Pearson chi-square, the generalized likelihood ratio, the power divergence, the blended weight chi-square, the blended weight Hellinger distance, and the negative exponential disparity statistic. Three dimensional contingency tables of small and moderate sample sizes are generated to be fitted to all possible hierarchical log-linear models: the completely independent model, the conditionally independent model, the partial association models, and the model with one variable independent of the other two. For models with direct solutions of expected cell counts, point estimates and confidence intervals of the 90 and 95 percentage points of six statistics are explored. For model without direct solutions, the empirical significant levels and the empirical powers of six statistics to test the significance of the three factor interaction are computed and compared.

  • PDF