• Title/Summary/Keyword: Hierarchical feature combining

Search Result 7, Processing Time 0.021 seconds

A Study on the Method of Combining Empirical Data and Deterministic Model for Fuel Failure Prediction (핵연료 파손 예측을 위한 경험적 자료와 결정론적 모델의 접합 방법)

  • Cho, Byeong-Ho;Yoon, Young-Ku;Chang, Soon-Heung
    • Nuclear Engineering and Technology
    • /
    • v.19 no.4
    • /
    • pp.233-241
    • /
    • 1987
  • Difficulties are encountered when the behavior of complex systems (i.e., fuel failure probability) that have unreliable deterministic models is predicted. For more realistic prediction of the behavior of complex systems with limited observational data, the present study was undertaken to devise an approach of combining predictions from the deterministic model and actual observational data. Predictions by this method of combining are inferred to be of higher reliability than separate predictions made by either model taken independently. A systematic method of hierarchical pattern discovery based on the method developed in the SPEAR was used for systematic search of weighting factors and pattern boundaries for the present method. A sample calculation was performed for prediction of CANDU fuel failures that had occurred due to power ramp during refuelling process. It was demonstrated by this sample calculation that there exists a region of feature space in which fuel failure probability from the PROFIT model nearly agree with that from observational data.

  • PDF

Hierarchical Overlapping Clustering to Detect Complex Concepts (중복을 허용한 계층적 클러스터링에 의한 복합 개념 탐지 방법)

  • Hong, Su-Jeong;Choi, Joong-Min
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.111-125
    • /
    • 2011
  • Clustering is a process of grouping similar or relevant documents into a cluster and assigning a meaningful concept to the cluster. By this process, clustering facilitates fast and correct search for the relevant documents by narrowing down the range of searching only to the collection of documents belonging to related clusters. For effective clustering, techniques are required for identifying similar documents and grouping them into a cluster, and discovering a concept that is most relevant to the cluster. One of the problems often appearing in this context is the detection of a complex concept that overlaps with several simple concepts at the same hierarchical level. Previous clustering methods were unable to identify and represent a complex concept that belongs to several different clusters at the same level in the concept hierarchy, and also could not validate the semantic hierarchical relationship between a complex concept and each of simple concepts. In order to solve these problems, this paper proposes a new clustering method that identifies and represents complex concepts efficiently. We developed the Hierarchical Overlapping Clustering (HOC) algorithm that modified the traditional Agglomerative Hierarchical Clustering algorithm to allow overlapped clusters at the same level in the concept hierarchy. The HOC algorithm represents the clustering result not by a tree but by a lattice to detect complex concepts. We developed a system that employs the HOC algorithm to carry out the goal of complex concept detection. This system operates in three phases; 1) the preprocessing of documents, 2) the clustering using the HOC algorithm, and 3) the validation of semantic hierarchical relationships among the concepts in the lattice obtained as a result of clustering. The preprocessing phase represents the documents as x-y coordinate values in a 2-dimensional space by considering the weights of terms appearing in the documents. First, it goes through some refinement process by applying stopwords removal and stemming to extract index terms. Then, each index term is assigned a TF-IDF weight value and the x-y coordinate value for each document is determined by combining the TF-IDF values of the terms in it. The clustering phase uses the HOC algorithm in which the similarity between the documents is calculated by applying the Euclidean distance method. Initially, a cluster is generated for each document by grouping those documents that are closest to it. Then, the distance between any two clusters is measured, grouping the closest clusters as a new cluster. This process is repeated until the root cluster is generated. In the validation phase, the feature selection method is applied to validate the appropriateness of the cluster concepts built by the HOC algorithm to see if they have meaningful hierarchical relationships. Feature selection is a method of extracting key features from a document by identifying and assigning weight values to important and representative terms in the document. In order to correctly select key features, a method is needed to determine how each term contributes to the class of the document. Among several methods achieving this goal, this paper adopted the $x^2$�� statistics, which measures the dependency degree of a term t to a class c, and represents the relationship between t and c by a numerical value. To demonstrate the effectiveness of the HOC algorithm, a series of performance evaluation is carried out by using a well-known Reuter-21578 news collection. The result of performance evaluation showed that the HOC algorithm greatly contributes to detecting and producing complex concepts by generating the concept hierarchy in a lattice structure.

A Novel Multi-view Face Detection Method Based on Improved Real Adaboost Algorithm

  • Xu, Wenkai;Lee, Eung-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2720-2736
    • /
    • 2013
  • Multi-view face detection has become an active area for research in the last few years. In this paper, a novel multi-view human face detection algorithm based on improved real Adaboost is presented. Real Adaboost algorithm is improved by weighted combination of weak classifiers and the approximately best combination coefficients are obtained. After that, we proved that the function of sample weight adjusting method and weak classifier training method is to guarantee the independence of weak classifiers. A coarse-to-fine hierarchical face detector combining the high efficiency of Haar feature with pose estimation phase based on our real Adaboost algorithm is proposed. This algorithm reduces training time cost greatly compared with classical real Adaboost algorithm. In addition, it speeds up strong classifier converging and reduces the number of weak classifiers. For frontal face detection, the experiments on MIT+CMU frontal face test set result a 96.4% correct rate with 528 false alarms; for multi-view face in real time test set result a 94.7 % correct rate. The experimental results verified the effectiveness of the proposed approach.

Bagging deep convolutional autoencoders trained with a mixture of real data and GAN-generated data

  • Hu, Cong;Wu, Xiao-Jun;Shu, Zhen-Qiu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5427-5445
    • /
    • 2019
  • While deep neural networks have achieved remarkable performance in representation learning, a huge amount of labeled training data are usually required by supervised deep models such as convolutional neural networks. In this paper, we propose a new representation learning method, namely generative adversarial networks (GAN) based bagging deep convolutional autoencoders (GAN-BDCAE), which can map data to diverse hierarchical representations in an unsupervised fashion. To boost the size of training data, to train deep model and to aggregate diverse learning machines are the three principal avenues towards increasing the capabilities of representation learning of neural networks. We focus on combining those three techniques. To this aim, we adopt GAN for realistic unlabeled sample generation and bagging deep convolutional autoencoders (BDCAE) for robust feature learning. The proposed method improves the discriminative ability of learned feature embedding for solving subsequent pattern recognition problems. We evaluate our approach on three standard benchmarks and demonstrate the superiority of the proposed method compared to traditional unsupervised learning methods.

Distracted Driver Detection and Characteristic Area Localization by Combining CAM-Based Hierarchical and Horizontal Classification Models (CAM 기반의 계층적 및 수평적 분류 모델을 결합한 운전자 부주의 검출 및 특징 영역 지역화)

  • Go, Sooyeon;Choi, Yeongwoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.439-448
    • /
    • 2021
  • Driver negligence accounts for the largest proportion of the causes of traffic accidents, and research to detect them is continuously being conducted. This paper proposes a method to accurately detect a distracted driver and localize the most characteristic parts of the driver. The proposed method hierarchically constructs a CNN basic model that classifies 10 classes based on CAM in order to detect driver distration and 4 subclass models for detailed classification of classes having a confusing or common feature area in this model. The classification result output from each model can be considered as a new feature indicating the degree of matching with the CNN feature maps, and the accuracy of classification is improved by horizontally combining and learning them. In addition, by combining the heat map results reflecting the classification results of the basic and detailed classification models, the characteristic areas of attention in the image are found. The proposed method obtained an accuracy of 95.14% in an experiment using the State Farm data set, which is 2.94% higher than the 92.2%, which is the highest accuracy among the results using this data set. Also, it was confirmed by the experiment that more meaningful and accurate attention areas were found than the results of the attention area found when only the basic model was used.

Scene Text Extraction in Natural Images using Hierarchical Feature Combination and Verification (계층적 특징 결합 및 검증을 이용한 자연이미지에서의 장면 텍스트 추출)

  • 최영우;김길천;송영자;배경숙;조연희;노명철;이성환;변혜란
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.4
    • /
    • pp.420-438
    • /
    • 2004
  • Artificially or naturally contained texts in the natural images have significant and detailed information about the scenes. If we develop a method that can extract and recognize those texts in real-time, the method can be applied to many important applications. In this paper, we suggest a new method that extracts the text areas in the natural images using the low-level image features of color continuity. gray-level variation and color valiance and that verifies the extracted candidate regions by using the high-level text feature such as stroke. And the two level features are combined hierarchically. The color continuity is used since most of the characters in the same text lesion have the same color, and the gray-level variation is used since the text strokes are distinctive in their gray-values to the background. Also, the color variance is used since the text strokes are distinctive in their gray-values to the background, and this value is more sensitive than the gray-level variations. The text level stroke features are extracted using a multi-resolution wavelet transforms on the local image areas and the feature vectors are input to a SVM(Support Vector Machine) classifier for the verification. We have tested the proposed method using various kinds of the natural images and have confirmed that the extraction rates are very high even in complex background images.

Hybrid Word-Character Neural Network Model for the Improvement of Document Classification (문서 분류의 개선을 위한 단어-문자 혼합 신경망 모델)

  • Hong, Daeyoung;Shim, Kyuseok
    • Journal of KIISE
    • /
    • v.44 no.12
    • /
    • pp.1290-1295
    • /
    • 2017
  • Document classification, a task of classifying the category of each document based on text, is one of the fundamental areas for natural language processing. Document classification may be used in various fields such as topic classification and sentiment classification. Neural network models for document classification can be divided into two categories: word-level models and character-level models that treat words and characters as basic units respectively. In this study, we propose a neural network model that combines character-level and word-level models to improve performance of document classification. The proposed model extracts the feature vector of each word by combining information obtained from a word embedding matrix and information encoded by a character-level neural network. Based on feature vectors of words, the model classifies documents with a hierarchical structure wherein recurrent neural networks with attention mechanisms are used for both the word and the sentence levels. Experiments on real life datasets demonstrate effectiveness of our proposed model.