Proceedings of the Korean Society for Emotion and Sensibility Conference
/
2002.05a
/
pp.195-200
/
2002
ART (Adaptive Resonance Theory [1]) neural network and its variations perform non-hierarchical clustering by unsupervised learning. We propose a scheme "arboART" for hierarchical clustering by using several ART1.5-SSS networks. It classifies multidimensional vectors as a cluster tree, and finds features of clusters. The Basic idea of arboART is to use the prototype formed in an ART network as an input to other ART network that has looser distance criteria (Ishihara, et al., [2,3]). By sending prototype vectors made by ART to one after another, many small categories are combined into larger and more generalized categories. We can draw a dendrogram using classification records of sample and categories. We have confirmed its ability using standard test data commonly used in pattern recognition community. The clustering result is better than traditional computing methods, on separation of outliers, smaller error (diameter) of clusters and causes no chaining. This methodology is applied to Kansei evaluation experiment data analysis.
Journal of the Korean Society of Clothing and Textiles
/
v.30
no.5
s.153
/
pp.699-710
/
2006
The objective of this study was to identify the texture-related components of woven fabrics and to develop a multidimensional perceptual structure map to represent the tactile textures. Eighty subjects in clothing and tektite industries were selected for multivariate data on each fabric of 30 using the questionnaire with 9 pointed semantic differential scales of 20 texture-related adjectives. Data were analyzed by factor analysis, hierarchical cluster analysis, and multidimensional scaling(MDS) using SPSS statistical package. The results showed that the five factors were selected and composed of density/warmth-coolness, stiffness, extensibility, drapeability, and surface/slipperiness. As a result of hierarchical cluster analysis, 30 fabrics were grouped by four clusters; each cluster was named with density/warmth-coolness, surface/slipperiness, stiffness, and extensibility, respectively. By MDS, three dimensions of tactile texture were obtained and a 3-dimensional perceptual structure map was suggested. The three dimensions were named as surface/slipperiness, extensibility, and stiffness. We proposed a positioning perceptual map of fabrics related to texture naming system(TNS). To classify the textural features of the woven fabrics, hierarchical cluster analysis containing all the data variations, even though it includes the errors, may be more desirable than texture-related multidimensional data analysis based on factor loading values in respect of the effective variables reduction without losing the critical variations.
The Journal of Korean Association of Computer Education
/
v.22
no.5
/
pp.51-65
/
2019
This study aims to provide educational implications for more strategic online software education by the types of online learning according to learners' self-regulated learning characteristics in the online software education environment and examining the characteristics of each type. For this, variables related to self-regulated learning characteristic were extracted from the log data of 809 students participating in the online software learning program of K University, and then analyzed using hierarchical cluster analysis. Based on hierarchical cluster analysis learner clusters according to the characteristics of self-regulated learning were derived and the differences between learners' learning characteristics and learning results according to cluster types were examined. As a result, the types of self-regulated learning of online software learners were classified as 'high level self-regulated learning type (group 1)', 'medium level self-regulated learning type (group 2)', and 'low level self-regulated learning type (group 3)'. The achievement level was found to be highest in 'high-level self-regulated learning type (group 1)' and 'low-level self-regulated learning type (group 3)' was the lowest. Based on these results, the implications for effective online software education were suggested.
In the present study, muscle tissues were obtained separately from individuals from Atlantic hairtail population (AHP), Gunsan hairtail population (GHP) and Chinese hairtail population (CHP), respectively. The seven decamer primers were used to generate the shared loci, specific, unique shared loci to each population and shared loci by the three hairtail populations. Here, averagely, a decamer primer generated 64.7 amplified products per primer in the AHP population, 55.7 in GHP population and 56.4 in CHP population. The number of unique shared loci to each population and number of shared loci by the three populations generated by genetic analysis using 7 decamer primers in AHP, GHP and CHP population. 119 unique shared loci to each population, with an average of 17 per primer, were observed in the AHP population, and 28 loci, with an average of 4 per primer, were observed in the CHP population. The hierarchical dendrogram point out three main branches: cluster 1 (ATLANTIC 01 ~ ATLANTIC 07), cluster 2 (GUNSAN 08 ~ GUNSAN 14) and cluster 3 (CHINESE 15 ~ CHINESE 21). The shortest genetic distance displaying significant molecular difference was between individuals' CHINESE no. 16 and CHINESE no. 18 (0.045). In the long run, individual no. 01 of the AHP population was most distantly related to CHINESE no. 19 (genetic distance = 0.430). Consequently, PCR analysis generated on the genetic data displayed that the geographic AHP population was widely separated from CHP population, while individuals of CHP population were fairly closely related to those of GHP population.
This paper deals with the methods for selecting the key research areas, which fit for the large, multi-disciplinary, and long-term programs by making use of Technology Cluster Analysis. This method is applied to mano-technology field at the level of national R&D program. 56 nano-technologies are analyzed and grouped into three main clusters based on the survey data from 180 experts. Three main clusters are \circled1 naro-materials related cluster, \circled2 naro-device related cluster, and \circled3 naro-bio related cluster. These three clusters are coincided with the focused areas of nano-technology in Korea. Each cluster is analyzed in view of its competence position.
Communications for Statistical Applications and Methods
/
v.9
no.2
/
pp.543-553
/
2002
Principal component analysis is applied to reduce p-dimensions into q-dimensions ( $q {\leq} p$). Any partition of a collection of data points with p and q variables generated by the application of six hierarchical clustering methods is re-classified by discriminant analysis. From the application of discriminant analysis through each hierarchical clustering method, correct classification ratios are obtained. The results illustrate which method is more reasonable in exploratory data analysis.
Park, Kuen-Woo;Kim, Dong-Yi;Lee, Sang-Yong;Kim, Jun-Hong;Yang, Dong-Sik
Horticultural Science & Technology
/
v.29
no.4
/
pp.382-387
/
2011
The chemical composition of essential oils obtained from aerial parts in spearmint, apple mint and chocolate mint, was investigated by gas chromatography/mass spectrometry analyses. (-)-Carvone (33.0%) was quantitatively major compound in spearmint, followed by R-(+)-limonene (11.7%) and ${\beta}$-phellandrene (9.7%); (-)-carvone (37.4%) and germacrene D (11.9%) in apple mint; and (-)-menthol (34.3%), p-menthone (18.4%) and menthofuran (9.8%) in chocolate mint. Hierarchical cluster analysis and principle components analysis showed the clear difference in chemical composition of the three mint oils.
In the present study, the neural network (NN) model with cluster analysis method was developed to predict storm surge in the whole Korean coastal regions with special focuses on the regional extension. The model used in this study is NN model for each cluster (CL-NN) with the cluster analysis. In order to find the optimal clustering of the stations, agglomerative method among hierarchical clustering methods was used. Various stations were clustered each other according to the centroid-linkage criterion and the cluster analysis should stop when the distances between merged groups exceed any criterion. Finally the CL-NN can be constructed for predicting storm surge in the cluster regions. To validate model results, predicted sea level value from CL-NN model was compared with that of conventional harmonic analysis (HA) and of the NN model in each region. The forecast values from NN and CL-NN models show more accuracy with observed data than that of HA. Especially the statistics analysis such as RMSE and correlation coefficient shows little differences between CL-NN and NN model results. These results show that cluster analysis and CL-NN model can be applied in the regional storm surge prediction and developed forecast system.
Regarding the discourse on the correlation between governmental financial support and firm performance, much emphasis has been placed on the role of individual corporate characteristics as well as spatial features. However, there is a notable scarcity of empirical research examining the integrated impact of corporate and cluster characteristics on managerial performance. This study addresses this gap by empirically analyzing the financial and non-financial outcomes resulting from specific allocations of governmental financial support. Additionally, it explores corporate and cluster characteristics predicted to moderate the influence between governmental financial support and firm performance. The analysis employs a two-level hierarchical linear model (HLM) at individual and group levels. The data, reorganized based on business registration numbers at the firm and cluster levels, ultimately utilized panel data from 83,395 firms and 641 clusters. The research findings indicate that governmental financial support demonstrates a positive effect (+) on both sales and patents for firms, suggesting its effectiveness in complementing market failures. Results from the hierarchical linear model analysis show that when combined with human capital capacity, absorptive capacity, and cluster network density, governmental financial support exhibits significant positive effects on sales. This study contributes theoretical and practical insights by analyzing the relationship between governmental financial support and firm performance using a two-level hierarchical linear model. It highlights the role of corporate characteristics such as human capital and absorptive capacity, along with cluster characteristics like cluster network density, in moderating the effects of governmental financial support on firm performance.
Journal of the military operations research society of Korea
/
v.6
no.2
/
pp.89-127
/
1980
The multivariate analysis techniques of cluster analysis are examined in this article. The theory and applications of the techniques and computer software concerning these techniques are discussed and sample jobs are included. A hierarchical cluster analysis algorithm, available in the IMSL software package, is applied to a set of data extracted from a group of subjects for the purpose of partitioning a collection of 26 attributes of a weapon system into six clusters of superattributes. A nonhierarchical clustering procedure were applied to a collection of data of tanks considering of twenty-four observations of ten attributes of tanks. The cluster analysis shows that the tanks cluster somewhat naturally by nationality. The principal componant analysis and the discriminant analysis show that tank weight is the single most important discriminator among nationality although they are not shown in this article because of the space restriction. This is a part of thesis for master's degree in operations research.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.