• Title/Summary/Keyword: Hierarchical algorithm

Search Result 852, Processing Time 0.025 seconds

A QoS-based Inter-Domain Routing Scheme for Distributed Multimedia Applications in a High Wide Area Network (분산 멀티미디어 응용을 위한 대규모 고속 통신망에서의 QoS-근거 계층적 도메인간 라우팅 방식)

  • 김승훈;김치하
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.7B
    • /
    • pp.1239-1251
    • /
    • 1999
  • In this paper a scalable QoS-based hierarchical inter-domain routing scheme for distributed multimedia applications in a high speed wide area network. The problem of QoS-based routing is formulated as a multicriteria shortest path problem, known as NP-complete[21,30]. Our routing scheme consists of two phases. In Phase 1, two graph construction algorithms are performed to model the network under consideration as a graph. The graph contains a part of the network topology which is completely neglected or partially considered by existing routing schemes, thus maintaining more accurate topology information. In Phase 2, a heuristic call-by-call algorithm is performed for selecting a feasible path efficiently in depth first search-like manner on the graph and tailoring to each application's QoS requirements, beginning at a vertex that represents the source node. In this paper, a simple rule is also produced, by which the visiting order of outgoing edges at each vertex on the graph is determined. The rule is based on each edge's the minimum normalized slackness to the QoS requested. The proposed routing scheme extends the PNNI-type hierarchical routing framework. Note that our routing scheme is one of a few QoS-based hierarchical routing schemes that address explicitly the issue of selecting a path with multiple metrics.

  • PDF

A Basic Study on the Differential Diagnostic System of Laryngeal Diseases using Hierarchical Neural Networks (다단계 신경회로망을 이용한 후두질환 감별진단 시스템의 개발)

  • 전계록;김기련;권순복;예수영;이승진;왕수건
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.197-205
    • /
    • 2002
  • The objectives of this Paper is to implement a diagnostic classifier of differential laryngeal diseases from acoustic signals acquired in a noisy room. For this Purpose, the voice signals of the vowel /a/ were collected from Patients in a soundproof chamber and got mixed with noise. Then, the acoustic Parameters were analyzed, and hierarchical neural networks were applied to the data classification. The classifier had a structure of five-step hierarchical neural networks. The first neural network classified the group into normal and benign or malign laryngeal disease cases. The second network classified the group into normal or benign laryngeal disease cases The following network distinguished polyp. nodule. Palsy from the benign laryngeal cases. Glottic cancer cases were discriminated into T1, T2. T3, T4 by the fourth and fifth networks All the neural networks were based on multilayer perceptron model which classified non-linear Patterns effectively and learned by an error back-propagation algorithm. We chose some acoustic Parameters for classification by investigating the distribution of laryngeal diseases and Pilot classification results of those Parameters derived from MDVP. The classifier was tested by using the chosen parameters to find the optimum ones. Then the networks were improved by including such Pre-Processing steps as linear and z-score transformation. Results showed that 90% of T1, 100% of T2-4 were correctly distinguished. On the other hand. 88.23% of vocal Polyps, 100% of normal cases. vocal nodules. and vocal cord Paralysis were classified from the data collected in a noisy room.

Design of Optimized Fuzzy Controller by Means of HFC-based Genetic Algorithms for Rotary Inverted Pendulum System (회전형 역 진자 시스템에 대한 계층적 공정 경쟁 기반 유전자 알고리즘을 이용한 최적 Fuzzy 제어기 설계)

  • Jung, Seung-Hyun;Choi, Jeoung-Nae;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.236-242
    • /
    • 2008
  • In this paper, we propose an optimized fuzzy controller based on Hierarchical Fair Competition-based Genetic Algorithms (HFCGA) for rotary inverted pendulum system. We adopt fuzzy controller to control the rotary inverted pendulum and the fuzzy rules of the fuzzy controller are designed based on the design methodology of Linear Quadratic Regulator (LQR) controller. Simple Genetic Algorithms (SGAs) is well known as optimization algorithms supporting search of a global character. There is a long list of successful usages of GAs reported in different application domains. It should be stressed, however, that GAs could still get trapped in a sub-optimal regions of the search space due to premature convergence. Accordingly the parallel genetic algorithm was developed to eliminate an effect of premature convergence. In particular, as one of diverse types of the PGA, HFCGA has emerged as an effective optimization mechanism for dealing with very large search space. We use HFCGA to optimize the parameter of the fuzzy controller. A comparative analysis between the simulation and the practical experiment demonstrates that the proposed HFCGA based fuzzy controller leads to superb performance in comparison with the conventional LQR controller as well as SGAs based fuzzy controller.

Wafer bin map failure pattern recognition using hierarchical clustering (계층적 군집분석을 이용한 반도체 웨이퍼의 불량 및 불량 패턴 탐지)

  • Jeong, Joowon;Jung, Yoonsuh
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.3
    • /
    • pp.407-419
    • /
    • 2022
  • The semiconductor fabrication process is complex and time-consuming. There are sometimes errors in the process, which results in defective die on the wafer bin map (WBM). We can detect the faulty WBM by finding some patterns caused by dies. When one manually seeks the failure on WBM, it takes a long time due to the enormous number of WBMs. We suggest a two-step approach to discover the probable pattern on the WBMs in this paper. The first step is to separate the normal WBMs from the defective WBMs. We adapt a hierarchical clustering for de-noising, which nicely performs this work by wisely tuning the number of minimum points and the cutting height. Once declared as a faulty WBM, then it moves to the next step. In the second step, we classify the patterns among the defective WBMs. For this purpose, we extract features from the WBM. Then machine learning algorithm classifies the pattern. We use a real WBM data set (WM-811K) released by Taiwan semiconductor manufacturing company.

Development of a complex failure prediction system using Hierarchical Attention Network (Hierarchical Attention Network를 이용한 복합 장애 발생 예측 시스템 개발)

  • Park, Youngchan;An, Sangjun;Kim, Mintae;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.127-148
    • /
    • 2020
  • The data center is a physical environment facility for accommodating computer systems and related components, and is an essential foundation technology for next-generation core industries such as big data, smart factories, wearables, and smart homes. In particular, with the growth of cloud computing, the proportional expansion of the data center infrastructure is inevitable. Monitoring the health of these data center facilities is a way to maintain and manage the system and prevent failure. If a failure occurs in some elements of the facility, it may affect not only the relevant equipment but also other connected equipment, and may cause enormous damage. In particular, IT facilities are irregular due to interdependence and it is difficult to know the cause. In the previous study predicting failure in data center, failure was predicted by looking at a single server as a single state without assuming that the devices were mixed. Therefore, in this study, data center failures were classified into failures occurring inside the server (Outage A) and failures occurring outside the server (Outage B), and focused on analyzing complex failures occurring within the server. Server external failures include power, cooling, user errors, etc. Since such failures can be prevented in the early stages of data center facility construction, various solutions are being developed. On the other hand, the cause of the failure occurring in the server is difficult to determine, and adequate prevention has not yet been achieved. In particular, this is the reason why server failures do not occur singularly, cause other server failures, or receive something that causes failures from other servers. In other words, while the existing studies assumed that it was a single server that did not affect the servers and analyzed the failure, in this study, the failure occurred on the assumption that it had an effect between servers. In order to define the complex failure situation in the data center, failure history data for each equipment existing in the data center was used. There are four major failures considered in this study: Network Node Down, Server Down, Windows Activation Services Down, and Database Management System Service Down. The failures that occur for each device are sorted in chronological order, and when a failure occurs in a specific equipment, if a failure occurs in a specific equipment within 5 minutes from the time of occurrence, it is defined that the failure occurs simultaneously. After configuring the sequence for the devices that have failed at the same time, 5 devices that frequently occur simultaneously within the configured sequence were selected, and the case where the selected devices failed at the same time was confirmed through visualization. Since the server resource information collected for failure analysis is in units of time series and has flow, we used Long Short-term Memory (LSTM), a deep learning algorithm that can predict the next state through the previous state. In addition, unlike a single server, the Hierarchical Attention Network deep learning model structure was used in consideration of the fact that the level of multiple failures for each server is different. This algorithm is a method of increasing the prediction accuracy by giving weight to the server as the impact on the failure increases. The study began with defining the type of failure and selecting the analysis target. In the first experiment, the same collected data was assumed as a single server state and a multiple server state, and compared and analyzed. The second experiment improved the prediction accuracy in the case of a complex server by optimizing each server threshold. In the first experiment, which assumed each of a single server and multiple servers, in the case of a single server, it was predicted that three of the five servers did not have a failure even though the actual failure occurred. However, assuming multiple servers, all five servers were predicted to have failed. As a result of the experiment, the hypothesis that there is an effect between servers is proven. As a result of this study, it was confirmed that the prediction performance was superior when the multiple servers were assumed than when the single server was assumed. In particular, applying the Hierarchical Attention Network algorithm, assuming that the effects of each server will be different, played a role in improving the analysis effect. In addition, by applying a different threshold for each server, the prediction accuracy could be improved. This study showed that failures that are difficult to determine the cause can be predicted through historical data, and a model that can predict failures occurring in servers in data centers is presented. It is expected that the occurrence of disability can be prevented in advance using the results of this study.

The Analysis of Competitiveness in Container Ports of Shanghai and North China & Korea Using Inverse Relation of Fuzzy Evaluation and Scenario Analysis (퍼지 역평가법과 시나리오 분석을 통한 상하이 및 북중국과 우리나라 컨테이너항만의 경쟁력분석에 관한 연구)

  • Ryu, Hyung-Geun;Lee, Hong-Girl;Yeo, Ki-Tae
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.7 s.78
    • /
    • pp.49-59
    • /
    • 2004
  • In order to be a hub-port in Northeast Asia, current China government has intensively invested in port development. Further, this development Project is significantly big scale, compared with those projects which Korea and Japan have. Thus, China is beginning to threaten Korean ports, especially Busan port which try to be a hub port in Northeast Asia. For this reason, recently many studies to evaluate competitiveness between Korean ports, especially Busan and Gwangyang, and Chinese ports have been conducted. In the mean time, implications of those pervious research has mainly been based on evaluation of port competitiveness using evaluation methodologies, such as AHP(Analytical Hierarchy Process) and HFP(Hierarchical Fuzzy Process). However, as previous evaluation algorithms are methodologies that only calculate ranking of ports by competitiveness level, from the results of analysis, critical weak points affected current port competitiveness could not clearly fine out. That is, because there has not been any algorithm that can extract critical points from the evaluation results. The aim of this paper is to present critical points that affect port competitiveness using an algorithm based on IRFE(Inverse Relation of Fuzzy Evaluation), and scenario analysis, from previous results of evaluation of port competitiveness. And The research scope is to covey the subjective ports of Korea and China's 7 major ports (Busan, Gwangyang, Sanghai, Qingdao, Tienjin, Dalian and Kaoshuing). From analysis, it was found that critical weak point of Busan port is the level of hinterland including availability of free trade zone.

Human Visual Perception-Based Quantization For Efficiency HEVC Encoder (HEVC 부호화기 고효율 압축을 위한 인지시각 특징기반 양자화 방법)

  • Kim, Young-Woong;Ahn, Yong-Jo;Sim, Donggyu
    • Journal of Broadcast Engineering
    • /
    • v.22 no.1
    • /
    • pp.28-41
    • /
    • 2017
  • In this paper, the fast encoding algorithm in High Efficiency Video Coding (HEVC) encoder was studied. For the encoding efficiency, the current HEVC reference software is divided the input image into Coding Tree Unit (CTU). then, it should be re-divided into CU up to maximum depth in form of quad-tree for RDO (Rate-Distortion Optimization) in encoding precess. But, it is one of the reason why complexity is high in the encoding precess. In this paper, to reduce the high complexity in the encoding process, it proposed the method by determining the maximum depth of the CU using a hierarchical clustering at the pre-processing. The hierarchical clustering results represented an average combination of motion vectors (MV) on neighboring blocks. Experimental results showed that the proposed method could achieve an average of 16% time saving with minimal BD-rate loss at 1080p video resolution. When combined the previous fast algorithm, the proposed method could achieve an average 45.13% time saving with 1.84% BD-rate loss.

Real-Time Terrain Visualization with Hierarchical Structure (실시간 시각화를 위한 계층 구조 구축 기법 개발)

  • Park, Chan Su;Suh, Yong Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2D
    • /
    • pp.311-318
    • /
    • 2009
  • Interactive terrain visualization is an important research area with applications in GIS, games, virtual reality, scientific visualization and flight simulators, besides having military use. This is a complex and challenging problem considering that some applications require precise visualizations of huge data sets at real-time rates. In general, the size of data sets makes rendering at real-time difficult since the terrain data cannot fit entirely in memory. In this paper, we suggest the effective Real-time LOD(level-of-detail) algorithm for displaying the huge terrain data and processing mass geometry. We used a hierarchy structure with $4{\times}4$ and $2{\times}2$ tiles for real-time rendering of mass volume DEM which acquired from Digital map, LiDAR, DTM and DSM. Moreover, texture mapping is performed to visualize realistically while displaying height data of normalized Giga Byte level with user oriented terrain information and creating hill shade map using height data to hierarchy tile structure of file type. Large volume of terrain data was transformed to LOD data for real time visualization. This paper show the new LOD algorithm for seamless visualization, high quality, minimize the data loss and maximize the frame speed.

Scheduling Algorithm using DAG Leveling in Optical Grid Environment (옵티컬 그리드 환경에서 DAG 계층화를 통한 스케줄링 알고리즘)

  • Yoon, Wan-Oh;Lim, Hyun-Soo;Song, In-Seong;Kim, Ji-Won;Choi, Sang-Bang
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.4
    • /
    • pp.71-81
    • /
    • 2010
  • In grid system, Task scheduling based on list scheduling models has showed low complexity and high efficiency in fully connected processor set environment. However, earlier schemes did not consider sufficiently the communication cost among tasks and the composition process of lightpath for communication in optical gird environment. In this thesis, we propose LSOG (Leveling Selection in Optical Grid) which sets task priority after forming a hierarchical directed acyclic graph (DAG) that is optimized in optical grid environment. To determine priorities of task assignment in the same level, proposed algorithm executes the task with biggest communication cost between itself and its predecessor. Then, it considers the shortest route for communication between tasks. This process improves communication cost in scheduling process through optimizing link resource usage in optical grid environment. We compared LSOG algorithm with conventional ELSA (Extended List Scheduling Algorithm) and SCP (Scheduled Critical Path) algorithm. We could see the enhancement in overall scheduling performance through increment in CCR value and smoothing network environment.

Multiple Path-Finding Algorithm in the Centralized Traffic Information System (중앙집중형 도로교통정보시스템에서 다중경로탐색 알고리즘)

  • 김태진;한민흥
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.6
    • /
    • pp.183-194
    • /
    • 2001
  • The centralized traffic information system is to gather and analyze real-time traffic information, to receive traffic information request from user, and to send user processed traffic information such as a path finding. Position information, result of destination search, and other information. In the centralized traffic information system, a server received path-finding requests from many clients and must process clients requests in time. The algorithm of multiple path-finding is needed for a server to process clients request, effectively in time. For this reason, this paper presents a heuristic algorithm that decreases time to compute path-finding requests. This heuristic algorithm uses results of the neighbor nodes shortest path-finding that are computed periodically. Path-finding results of this multiple path finding algorithm to use results of neighbor nodes shortest path-finding are the same as a real optimal path in many cases, and are a little different from results of a real optimal path in non-optimal path. This algorithm is efficiently applied to the general topology and the hierarchical topology such as traffic network. The computation time of a path-finding request that uses results of a neighbor nodes shortest path-finding is 50 times faster than other algorithms such as one-to-one label-setting and label-correcting algorithms. Especially in non-optimal path, the average error rate is under 0.1 percent.

  • PDF