• Title/Summary/Keyword: Hierarchical Wireless Sensor Network

Search Result 112, Processing Time 0.028 seconds

A Head Selection Algorithm with Energy Threshold in Wireless Sensor Networks (무선 센서 네트워크에서 에너지 임계값을 활용한 헤드 선정)

  • Kwon, Soon-II;Roh, II-Soon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.6
    • /
    • pp.111-116
    • /
    • 2009
  • LEACH is a important hierarchical protocol in wireless sensor network. In LEACH, the head is randomly selected for balanced energy consume. In LEACH-C, the node that has more energy than the average value is selected for the network life cycle. However, the round continues, the improved protocol is needed because the energy and network are changed. In this paper, LEACH, LEACH-C is not considered the energy consumed in the round because of wasted energy and reduce the time for presenting a new round time was set. And proposed the new algorithm using the energy threshold for the cluster head selection and the round time. In simulation, we show the improved performance compared to existing protocols.

  • PDF

Improvement of Hierarchical Routing in ZigBee Networks (지그비 계층적 라우팅의 성능 향상 기법)

  • Kim, Taehong;Kim, Daeyoung;Yoo, Seong-Eun;Sung, Jongwoo;Kim, Youngsoo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.1 no.2
    • /
    • pp.104-112
    • /
    • 2006
  • ZigBee is the emerging industrial standard for ad hoc networks based on IEEE 802.15.4. It is used for low data rate and low power wireless network applications. Expected applications of ZigBee include wireless sensor networks for remote monitoring, home control, and industrial automation. Since one of the most important design goals of ZigBee is to reduce the installation and running costs, the ZigBee stack is embedded in the cheap and small micro-controller unit. The hierarchical routing algorithm is used for ZigBee end devices which have very limited resources. Using the block addressing scheme, end devices can send data to the destination without a routing table. However, hierarchical routing has the problem that the packets follow the tree hierarchy to the destination even if the destination is located nearby. In this paper, we propose a scheme to improve the hierarchical routing algorithm in ZigBee networks by employing the neighbor table that is originally used together with the routing table. We suggest selecting the neighbor node that has the minimum remaining hops to the destination as the next hop node. Simulation result shows that the proposed scheme saves more than 30% of the hop counts compared with the original hierarchical routing.

  • PDF

A Study of Wireless Sensor Network Routing Protocols for Maintenance Access Hatch Condition Surveillance

  • Lee, Hoo-Rock;Chung, Kyung-Yul;Jhang, Kyoung-Son
    • Journal of Information Processing Systems
    • /
    • v.9 no.2
    • /
    • pp.237-246
    • /
    • 2013
  • Maintenance Access Hatches are used to ensure urban safety and aesthetics while facilitating the management of power lines, telecommunication lines, and gas pipes. Such facilities necessitate affordable and effective surveillance. In this paper, we propose a FiCHS (Fixed Cluster head centralized Hierarchical Static clustering) routing protocol that is suitable for underground maintenance hatches using WSN (Wireless Sensor Network) technology. FiCHS is compared with three other protocols, LEACH, LEACH-C, and a simplified LEACH, based on an ns-2 simulation. FiCHS was observed to exhibit the highest levels of power and data transfer efficiency.

A hierarchical key pre-distribution scheme for wireless sensor network (무선 센서 네트워크를 위한 계층적인 사전 키 분배 방법)

  • 김복순;조기환;이행곤
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04a
    • /
    • pp.361-363
    • /
    • 2004
  • 무선 센서 네트워크(WSN: Wireless Sensor Network) 환경에서 보안성을 확보하기 위하여, 센서 노드간에 전송된 메시지를 암호화하고 인증하는 것이 중요하다. 암호화와 인증을 위해 사용되는 키는 통신 노드 사이에 합의되어야 한다. 그러나 자원의 제약성 때문에, 일반적인 네트워크에서 많이 사용되는 Diffie-Hellman이나 공개키 기반 키 협의 방법은 WSN 환경에 적합하지 않다. 많은 노드에 비밀키를 사전에 정적으로 분배하는 것은 대용량의 메모리와 계산 능력을 요구하고, 네트워크 환경이 커짐에 따라 이들의 요구량이 급증하기 때문이다. 따라서 이러한 사전 키 분배 문제를 해결하기 위하여, 본 논문은 계층적인 사전 키 분배 방법을 제시한다. 제안된 방법은 기존 방법론과 비교하여 센서 노드간의 공유키가 존재 할 가능성을 증가시켜, 통신 채널을 쉽게 형성할 수 있도록 하였다. 또한 외부 공격자의 위협에 대비하여 q-composite 이론을 적용하여, 보안성을 강화시켰다.

  • PDF

Fixed Partitioning Methods for Extending lifetime of sensor node for Wireless Sensor Networks (WSN환경에서 센서노드의 생명주기 연장을 위한 고정 분할 기법)

  • Han, Chang-Su;Cho, Young-Bok;Woo, Sung-Hee;Lee, Sang-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.942-948
    • /
    • 2016
  • WSN based on wireless sensor nodes, Sensor nodes can not be reassigned and recharged if they once placed. Each sensor node comes into being involved to a communication network with its limited energy. But the existing proposed clustering techniques, being applied to WSN environment with irregular dispersion of sensor nodes, have the network reliability issues which bring about a communication interruption with the local node feature of unbalanced distribution in WSN. Therefore, the communications participation of the sensor nodes in the suggested algorithm is extended by 25% as the sensor field divided in the light of the non-uniformed distribution of sensor nodes and a static or a dynamic clustering algorithm adopted according to its partition of sensor node density in WSN. And the entire network life cycle was extended by 14% to ensure the reliability of the network.

Implementation of a Top-down Clustering Protocol for Wireless Sensor Networks (무선 네트워크를 위한 하향식 클러스터링 프로토콜의 구현)

  • Yun, Phil-Jung;Kim, Sang-Kyung;Kim, Chang-Hwa
    • Journal of Information Technology Services
    • /
    • v.9 no.3
    • /
    • pp.95-106
    • /
    • 2010
  • Many researches have been performed to increase energy-efficiency in wireless sensor networks. One of primary research topics is about clustering protocols, which are adopted to configure sensor networks in the form of hierarchical structures by grouping sensor nodes into a cluster. However, legacy clustering protocols do not propose detailed methods from the perspective of implementation to determine a cluster's boundary and configure a cluster, and to communicate among clusters. Moreover, many of them involve assumptions inappropriate to apply those to a sensor field. In this paper, we have designed and implemented a new T-Clustering (Top-down Clustering) protocol, which takes into considerations a node's density, a distance between cluster heads, and remained energy of a node all together. Our proposal is a sink-node oriented top-down clustering protocol, and can form uniform clusters throughout the network. Further, it provides re-clustering functions according to the state of a network. In order to verify our protocol's feasibility, we have implemented and experimented T-Clustering protocol on Crossbow's MICAz nodes which are executed on TinyOS 2.0.2.

A Web-based Sensor Network Query and Data Management (웹 기반의 센서네트워크 질의 및 데이타 관리)

  • Hwang, Kwang-Il;Eom, Doo-Seop
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.11
    • /
    • pp.820-829
    • /
    • 2006
  • Wireless sensor networks consisting of hundreds to thousands of nodes are expected to be increasingly deployed in coming years, as they enable reliable monitoring and analysis of physical worlds. These networks have unique features that are very different from traditional networks, e.g., the numerous numbers of nodes, limitation in power, processing, and memory. Due to these unique features of wireless sensor networks, sensor data management including querying becomes a challenging problem. Furthermore, due to wide popularization of the Internet and its facility in use, it is generally accepted that an unattended network can be efficiently managed and monitored over the Internet. In particular, in order to more efficiently query and manage data in a sensor network. in this paper, the architecture of a sensor gateway including web-based query server is presented and its implementation detail is illustrated. The presented web-based gateway is largely divided into two important parts: Internet part and sensor network part. The sensor network part plays an important role of handling a variety of sensor networks, including flat or hierarchical network architecture, by using internally layered architecture for efficiently querying and managing data in a sensor network. In addition, the Internet part provides a modular gateway function for favorable exchange between the sensor network and Internet.

An Energy Consumption Model using Hierarchical Unequal Clustering Method (계층적 불균형 클러스터링 기법을 이용한 에너지 소비 모델)

  • Kim, Jin-Su;Shin, Seung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2815-2822
    • /
    • 2011
  • Clustering method in wireless sensor networks is the technique that forms the cluster to aggregate the data and transmit them at the same time that they can use the energy efficiently. In this paper, I propose the hierarchical unequal clustering method using cluster group model. This divides the entire network into two layers. The data aggregated from layer 2 consisted of cluster group is sent to layer 1, after re-aggregation the total data is sent to base station. This method decreases whole energy consumption by using cluster group model with multi-hop communication architecture. Hot spot problem can be solved by establishing unequal cluster. I also show that proposed hierarchical unequal clustering method is better than previous clustering method at the point of network energy efficiency.

Secure Data Gathering Protocol over Wireless Sensor Network (무선센서네트워크에서 안전한 데이터 수집 프로토콜)

  • Choi, Hae-Won;Ryoo, Myung-Chun;Lee, Chae-Soo;Kim, Hyun-Sung
    • Journal of Digital Convergence
    • /
    • v.11 no.12
    • /
    • pp.367-380
    • /
    • 2013
  • A secure data gathering in a Wireless Sensor Network(WSN) has given attention to one of security issues. In general, the process of secure data gathering causes difficulties: one process is exchanging the secured data and the other is constructing secured data path. The previous studies have been resolving the difficulties in terms of two problems: security and data gathering in WSNs. However, a WSN requires a protocol that has to guarantee a security of path between sensors and sink, or a cluster head. Thus how to gather data securely is an important issue. In this paper, we propose a secure data gathering protocol over WSNs, which consists of hierarchical key settlement and secure path construction, and aims at tackling two problems. The proposed protocol causes little overhead to sensor nodes for secured key settlement and path construction. This work provides security analysis focused on the key settlement protocol and evaluates network performance for the proposed data gathering protocol through simulation.

Optimization Protocol using Load Balancing for Hierarchical Wireless Sensor Network (무선센서네트워크에서 부하 균등화를 위한 클러스터링 최적화 프로토콜)

  • Choi, Hae-Won;Kim, Sang-Jin;Pye, Su-Young;Chang, Chu-Seock
    • Journal of Digital Convergence
    • /
    • v.11 no.10
    • /
    • pp.419-429
    • /
    • 2013
  • The Wireless sensor network(WSN) consisting of a large number of sensors aims to gather data in a variety of environments. The sensor nodes operate on battery of limited power. so, To extend network life time is major goals of research in the WSN. In this paper, we state the key point of a energy consumption with minimum&load balancing. The proposed protocol guarantee balance of number of cluster member nodes using the node memory threshold and optimization of distribution of cluster head using the optimized clustering method. The results show that the proposed protocol could support the load balancing and high energy efficiency by distributing the clusters with a reasonable number of member nodes. The simulation results show that our schme ensure longer life time in WSN as compare with existing schemes such as LEACH and CBLM.