• Title/Summary/Keyword: Hierarchical Bayesian

Search Result 167, Processing Time 0.032 seconds

Bayesian pooling for contingency tables from small areas

  • Jo, Aejung;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.6
    • /
    • pp.1621-1629
    • /
    • 2016
  • This paper studies Bayesian pooling for analysis of categorical data from small areas. Many surveys consist of categorical data collected on a contingency table in each area. Statistical inference for small areas requires considerable care because the subpopulation sample sizes are usually very small. Typically we use the hierarchical Bayesian model for pooling subpopulation data. However, the customary hierarchical Bayesian models may specify more exchangeability than warranted. We, therefore, investigate the effects of pooling in hierarchical Bayesian modeling for the contingency table from small areas. In specific, this paper focuses on the methods of direct or indirect pooling of categorical data collected on a contingency table in each area through Dirichlet priors. We compare the pooling effects of hierarchical Bayesian models by fitting the simulated data. The analysis is carried out using Markov chain Monte Carlo methods.

Bayesian methods in clinical trials with applications to medical devices

  • Campbell, Gregory
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.6
    • /
    • pp.561-581
    • /
    • 2017
  • Bayesian statistics can play a key role in the design and analysis of clinical trials and this has been demonstrated for medical device trials. By 1995 Bayesian statistics had been well developed and the revolution in computing powers and Markov chain Monte Carlo development made calculation of posterior distributions within computational reach. The Food and Drug Administration (FDA) initiative of Bayesian statistics in medical device clinical trials, which began almost 20 years ago, is reviewed in detail along with some of the key decisions that were made along the way. Both Bayesian hierarchical modeling using data from previous studies and Bayesian adaptive designs, usually with a non-informative prior, are discussed. The leveraging of prior study data has been accomplished through Bayesian hierarchical modeling. An enormous advantage of Bayesian adaptive designs is achieved when it is accompanied by modeling of the primary endpoint to produce the predictive posterior distribution. Simulations are crucial to providing the operating characteristics of the Bayesian design, especially for a complex adaptive design. The 2010 FDA Bayesian guidance for medical device trials addressed both approaches as well as exchangeability, Type I error, and sample size. Treatment response adaptive randomization using the famous extracorporeal membrane oxygenation example is discussed. An interesting real example of a Bayesian analysis using a failed trial with an interesting subgroup as prior information is presented. The implications of the likelihood principle are considered. A recent exciting area using Bayesian hierarchical modeling has been the pediatric extrapolation using adult data in clinical trials. Historical control information from previous trials is an underused area that lends itself easily to Bayesian methods. The future including recent trends, decision theoretic trials, Bayesian benefit-risk, virtual patients, and the appalling lack of penetration of Bayesian clinical trials in the medical literature are discussed.

A hierarchical Bayesian model for spatial scaling method: Application to streamflow in the Great Lakes basin

  • Ahn, Kuk-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.176-176
    • /
    • 2018
  • This study presents a regional, probabilistic framework for estimating streamflow via spatial scaling in the Great Lakes basin, which is the largest lake system in the world. The framework follows a two-fold strategy including (1) a quadratic-programming based optimization model a priori to explore the model structure, and (2) a time-varying hierarchical Bayesian model based on insights found in the optimization model. The proposed model is developed to explore three innovations in hierarchical modeling for reconstructing historical streamflow at ungaged sites: (1) information of physical characteristics is utilized in spatial scaling, (2) a time-varying approach is introduced based on climate information, and (3) heteroscedasticity in residual errors is considered to improve streamflow predictive distributions. The proposed model is developed and calibrated in a hierarchical Bayesian framework to pool regional information across sites and enhance regionalization skill. The model is validated in a cross-validation framework along with four simpler nested formulations and the optimization model to confirm specific hypotheses embedded in the full model structure. The nested models assume a similar hierarchical Bayesian structure to our proposed model with their own set of simplifications and omissions. Results suggest that each of three innovations improve historical out-of-sample streamflow reconstructions although these improvements vary corrsponding to each innovation. Finally, we conclude with a discussion of possible model improvements considered by additional model structure and covariates.

  • PDF

A Hierarchical Bayesian Model for Survey Data with Nonresponse

  • Han, Geunshik
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.3
    • /
    • pp.435-451
    • /
    • 2001
  • We describe a hierarchical bayesian model to analyze multinomial nonignorable nonresponse data. Using a Dirichlet and beta prior to model the cell probabilities, We develop a complete hierarchical bayesian analysis for multinomial proportions without making any algebraic approximation. Inference is sampling based and Markove chain Monte Carlo methods are used to perform the computations. We apply our method to the dta on body mass index(BMI) and show the model works reasonably well.

  • PDF

Bayesian Estimation Using Noninformative Priors in Hierarchical Model

  • Kim, Dal-Ho;Choi, Jin-Kap;Choi, Hee-Jo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.4
    • /
    • pp.1033-1043
    • /
    • 2004
  • We consider the simultaneous Bayesian estimation for the normal means based on different noninformative type hyperpriors in hierarchical model. We provide numerical example using the famous baseball data in Efron and Morris (1975) for illustration.

  • PDF

Derivation and Uncertainty Analysis of Rating Curve Using Hierarchical Bayesian Model (Hierarchical Bayesian 방법을 이용한 수위-유량 관계 곡선 유도 및 불확실성 분석)

  • Kwon, Hyun-Han;Moon, Young-Il;Choi, Byung-Kyu;Kim, Seok-Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1211-1214
    • /
    • 2008
  • 정확한 유량산정은 수자원 연구에서 기초가 되는 자료를 생산한다는 관점에서 홍수 및 가뭄관리에서 매우 중요한 부분이라 할 수 있다. 국내에서 유량측정의 정확성을 높이고자 진보된 계측기의 개발 및 분석 방법에 관한 연구가 꾸준히 진행되고 있다. 일반적으로 유량을 추정하기 위해서 특정단면에서의 수위를 측정하여 이를 수위-유량 관계곡선을 통해서 유량으로 환산하게 된다. 즉 수위-유량 관계를 측정한 후 이를 회귀분석 방법으로 내삽 및 외삽을 실시하여 유량을 추정하게 된다. 그러나 수위-유량 관계곡선에서 저수위와 고수위를 하나의 곡선식으로 하게 되는 경우 정도가 낮아지게 되므로 많은 경우에 있어서 저수위, 고수위를 각각의 곡선으로 구하여 사용하고 있다. 이러한 경우 정량적으로 변곡점을 구하기보다는 경험적으로 저수위와 고수위를 구분하고 있으며, 수위-유량 관계를 회귀식에 의해서 추정하게 되므로 이에 대한 불확실성 또한 정량화할 필요가 있다. 이러한 관점에서 본 연구에서는 불확실성 분석과 함께, 저수위-고수위를 정량적으로 구분할 수 있는 Hierarchical Bayesian 방법을 도입하여 수위-유량곡선식을 유도하고자 한다.

  • PDF

Hierarchical Bayes Analysis of Smoking and Lung Cancer Data

  • Oh, Man-Suk;Park, Hyun-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.1
    • /
    • pp.115-128
    • /
    • 2002
  • Hierarchical models are widely used for inference on correlated parameters as a compromise between underfitting and overfilling problems. In this paper, we take a Bayesian approach to analyzing hierarchical models and suggest a Markov chain Monte Carlo methods to get around computational difficulties in Bayesian analysis of the hierarchical models. We apply the method to a real data on smoking and lung cancer which are collected from cities in China.

Optimal Multi-Model Ensemble Model Development Using Hierarchical Bayesian Model Based (Hierarchical Bayesian Model을 이용한 GCMs 의 최적 Multi-Model Ensemble 모형 구축)

  • Kwon, Hyun-Han;Min, Young-Mi;Hameed, Saji N.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1147-1151
    • /
    • 2009
  • In this study, we address the problem of producing probability forecasts of summer seasonal rainfall, on the basis of Hindcast experiments from a ensemble of GCMs(cwb, gcps, gdaps, metri, msc_gem, msc_gm2, msc_gm3, msc_sef and ncep). An advanced Hierarchical Bayesian weighting scheme is developed and used to combine nine GCMs seasonal hindcast ensembles. Hindcast period is 23 years from 1981 to 2003. The simplest approach for combining GCM forecasts is to weight each model equally, and this approach is referred to as pooled ensemble. This study proposes a more complex approach which weights the models spatially and seasonally based on past model performance for rainfall. The Bayesian approach to multi-model combination of GCMs determines the relative weights of each GCM with climatology as the prior. The weights are chosen to maximize the likelihood score of the posterior probabilities. The individual GCM ensembles, simple poolings of three and six models, and the optimally combined multimodel ensemble are compared.

  • PDF

Bayesian Curve-Fitting in Semiparametric Small Area Models with Measurement Errors

  • Hwang, Jinseub;Kim, Dal Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.4
    • /
    • pp.349-359
    • /
    • 2015
  • We study a semiparametric Bayesian approach to small area estimation under a nested error linear regression model with area level covariate subject to measurement error. Consideration is given to radial basis functions for the regression spline and knots on a grid of equally spaced sample quantiles of covariate with measurement errors in the nested error linear regression model setup. We conduct a hierarchical Bayesian structural measurement error model for small areas and prove the propriety of the joint posterior based on a given hierarchical Bayesian framework since some priors are defined non-informative improper priors that uses Markov Chain Monte Carlo methods to fit it. Our methodology is illustrated using numerical examples to compare possible models based on model adequacy criteria; in addition, analysis is conducted based on real data.

Bayesian Analysis for Heat Effects on Mortality

  • Jo, Young-In;Lim, Youn-Hee;Kim, Ho;Lee, Jae-Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.5
    • /
    • pp.705-720
    • /
    • 2012
  • In this paper, we introduce a hierarchical Bayesian model to simultaneously estimate the thresholds of each 6 cities. It was noted in the literature there was a dramatic increases in the number of deaths if the mean temperature passes a certain value (that we call a threshold). We estimate the difference of mortality before and after the threshold. For the hierarchical Bayesian analysis, some proper prior distribution of parameters and hyper-parameters are assumed. By combining the Gibbs and Metropolis-Hastings algorithm, we constructed a Markov chain Monte Carlo algorithm and the posterior inference was based on the posterior sample. The analysis shows that the estimates of the threshold are located at $25^{\circ}C{\sim}29^{\circ}C$ and the mortality around the threshold changes from -1% to 2~13%.