• 제목/요약/키워드: Hidden object detection

검색결과 24건 처리시간 0.02초

은닉마르코프모델과 DWT를 이용한 실시간 연기 검출 (Realtime Smoke Detection using Hidden Markov Model and DWT)

  • 김형오
    • 한국정보전자통신기술학회논문지
    • /
    • 제9권4호
    • /
    • pp.343-350
    • /
    • 2016
  • 본 논문은 DWT에너지 기반의 연기 검출 방법을 제안하였다. 일반적으로 연기는 형태가 명확하지 않고 주변 환경에 의하여 색상, 형태, 확산방향 등의 특징이 가변적이기 때문에 특정 정보만을 이용할 경우에는 오검출율이 높아진다. 따라서 본 논문에서는 환경변화에 강인한 전경 추출 방법을 이용하여 객체를 검출하고 추출된 객체의 색상, 형태, DWT 에너지 정보를 통합적으로 사용하여 연기를 판단한다. 제안된 방법은 평균 30fps의 처리속도를 가지므로 실시간 처리가 가능하고 화재 발생 시점으로부터 연기 감지까지의 평균 소요시간이 약 7초로 빠른 조기감지가 가능하며 낮은 오검출율을 나타내었다.

파라메트릭 배열을 이용한 은폐 물체 탐지 시스템 (Hidden Object Detection System using Parametric Array)

  • 이기배;이재일;배진호;이종현;조정홍
    • 전자공학회논문지
    • /
    • 제54권3호
    • /
    • pp.78-86
    • /
    • 2017
  • 본 논문에서는 은폐 물체 탐지를 위해 인체에 무해한 음향신호 중 파라메트릭 배열을 이용한 음향 탐지 시스템을 제안한다. 제안된 탐지 시스템은 파라메트릭 배열 현상으로부터 생성되는 고 지향성 Chirp 신호를 송신신호로 사용하고, Dechirp 처리 과정을 통해 수신신호의 신호 대 잡음비를 개선하여 거리 분해능을 향상시키는 기법을 사용한다. 제안된 파라메트릭 배열 시스템의 송신센서는 $8{\times}2$ 배열로 구축하였으며, 센서 배열의 빔 폭은 수평방향 약 $7^{\circ}$와 수직방향 약 $26^{\circ}$를 형성한다. 제안된 시스템을 검증하기 위해 물체 탐지 및 가시화를 위한 2축 구동 제어 선형 스테이지를 구축하였으며, 이를 이용하여 은폐된 물체에 대한 A-scan, B-scan 및 C-scan 실험을 진행하였다. 실험 결과, 천에 은폐된 동판과 파이프를 탐지하고 형상을 확인하였으며, 가시화된 형상에서 동판은 $0.015m^2$, 파이프는 $0.046m^2$의 오차를 보여주었다.

기술도해 생성을 위한 가시화 데이터 은선 제거 알고리즘 (Hidden Line Removal for Technical Illustration Based on Visualization Data)

  • 심현수;최영;양상욱
    • 한국CDE학회논문집
    • /
    • 제11권6호
    • /
    • pp.455-463
    • /
    • 2006
  • Hidden line removal(HLR) algorithms can be devised either in the image space or in the object space. This paper describes a hidden line removal algorithm in the object space specifically for the CAD viewer data. The approach is based on the Appel's 'Quantitative Invisibility' algorithm and fundamental concept of 'back face culling'. Input data considered in this algorithm can be distinguished from those considered for HLR algorithm in general. The original QI algorithm can be applied for the polyhedron models. During preprocessing step of our proposed algorithm, the self intersecting surfaces in the view direction are divided along the silhouette curves so that the QI algorithm can be applied. By this way the algorithm can be used for any triangulated freeform surfaces. A major advantage of this algorithm is the applicability to general CAD models and surface-based visualization data.

주변정보 검출을 통한 개선된 객체추적 기법 (Improved Object Tracking using Surrounding Information Detection)

  • 조치영;김수환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 추계학술대회
    • /
    • pp.1027-1030
    • /
    • 2013
  • 최근 동영상에서의 객체추적을 위해 주파수변환을 적용하는 연구가 발표되고 있다. 동영상에서 객체는 형상이 조금씩 변할 수 있다. ASEF, MOSSE와 같은 주파수변환을 통한 객체 추적 기법은 객체의 형상이 변하는 것에 대응하기 위해 추적에 사용되는 검출필터를 갱신하는 기능을 포함하고 있다. 그러나 객체의 형상이 변하는 객체 추적을 위한 이러한 주파수변환 기반 객체 추적방법들은 추적 대상 객체가 다른 물체에 의해 대부분이 일시적으로 가려진 후 형상이 변한 후에 인근의 다른 위치에 나타나는 경우, 추적에 실패하는 경우가 종종 발생한다. 본 논문에서는 추적 대상 객체가 다른 물체에 의해 가려지는 상황에 따라 필터갱신을 적응적으로 수행하고 이동경로와 주변정보를 활용함으로써 추적 대상객체가 가려지는 상황에서도 추적 실패를 줄일 수 있는 객체 탐색 기법을 제안한다.

  • PDF

Radar-based Security System: Implementation for Cluttered Environment

  • Lee, Tae-Yun;Skvortsov, Vladimir;Ka, Min-Ho
    • 전기전자학회논문지
    • /
    • 제19권2호
    • /
    • pp.160-167
    • /
    • 2015
  • We present an experimental implementation of the inexpensive microwave security sensor that can detect both static and slowly moving objects in cluttered environment. The prototype consists of a frequency-modulated continuous wave radar sensor, control board or computer and software. The prototype was tested in a cluttered indoor environment. In case of intrusion or change of environment the sensor will give an alarm, determine the location of new object, change in its location and can detect a slowly moving target. To make a low-cost unit we use commercially available automotive radar and own signal processing techniques for object detection and tracking. The intruder detection is based on a comparison between current 'image' in memory and 'no-intrusion' reference image. The main challenge is to develop a reliable technique for detection of a relatively low-magnitude object signals hidden in multipath clutter echo signals. Various experimental measurements and computations have shown the feasibility and performance of the system.

HOG-PCA와 객체 추적 알고리즘을 이용한 보행자 검출 및 추적 시스템 설계 (Design of Pedestrian Detection and Tracking System Using HOG-PCA and Object Tracking Algorithm)

  • 전필한;박찬준;김진율;오성권
    • 전기학회논문지
    • /
    • 제66권4호
    • /
    • pp.682-691
    • /
    • 2017
  • In this paper, we propose the fusion design methodology of both pedestrian detection and object tracking system realized with the aid of HOG-PCA based RBFNN pattern classifier. The proposed system includes detection and tracking parts. In the detection part, HOG features are extracted from input images for pedestrian detection. Dimension reduction is also dealt with in order to improve detection performance as well as processing speed by using PCA which is known as a typical dimension reduction method. The reduced features can be used as the input of the FCM-based RBFNNs pattern classifier to carry out the pedestrian detection. FCM-based RBFNNs pattern classifier consists of condition, conclusion, and inference parts. FCM clustering algorithm is used as the activation function of hidden layer. In the conclusion part of network, polynomial functions such as constant, linear, quadratic and modified quadratic are regarded as connection weights and their coefficients of polynomial function are estimated by LSE-based learning. In the tracking part, object tracking algorithms such as mean shift(MS) and cam shift(CS) leads to trace one of the pedestrian candidates nominated in the detection part. Finally, INRIA person database is used in order to evaluate the performance of the pedestrian detection of the proposed system while MIT pedestrian video as well as indoor and outdoor videos obtained from IC&CI laboratory in Suwon University are exploited to evaluate the performance of tracking.

Vanishing point-based 3D object detection method for improving traffic object recognition accuracy

  • Jeong-In, Park
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권1호
    • /
    • pp.93-101
    • /
    • 2023
  • 이 논문은 영상 카메라를 이용하여 교통 객체를 인식하고자 하는 경우, 영상 내 객체 인식 정확도를 높이기 위해 소실점을 이용하여 객체에 대한 3D 바운딩 박스를 생성하는 방법이다. 최근 인공지능을 이용하여 교통 영상 카메라로 촬영된 차량을 검출하고자 하는 경우 이 3D 바운딩 박스 생성 알고리즘을 적용하고자 한다. 카메라 설치 각도와 카메라가 촬영한 영상의 방향성을 분석하여 종 방향 소실점(VP1)과 횡 방향 소실점(VP2)을 도출하고 이를 기반으로 분석 대상 동영상에서 이동하는 객체를 특정하게 된다. 이 알고리즘을 적용하면 감지된 객체의 위치, 종류, 크기 등 객체 정보 검출이 용이하고, 이를 자동차와 같은 이동류에 적용하는 경우 이를 트래킹하여 각 객체가 이동한 위치와 좌표, 이동속도 및 방향 등을 알 수 있다. 실제 도로에 적용한 결과 트래킹이 10% 향상되었으며 특히 음영지역(큰 차에 가려진 극히 적은 차량 부위)의 인식율과 트래킹이 100% 개선되는 등 교통 데이터 분석 정확성을 향상시킬 수 있었다.

Study On Masked Face Detection And Recognition using transfer learning

  • Kwak, NaeJoung;Kim, DongJu
    • International Journal of Advanced Culture Technology
    • /
    • 제10권1호
    • /
    • pp.294-301
    • /
    • 2022
  • COVID-19 is a crisis with numerous casualties. The World Health Organization (WHO) has declared the use of masks as an essential safety measure during the COVID-19 pandemic. Therefore, whether or not to wear a mask is an important issue when entering and exiting public places and institutions. However, this makes face recognition a very difficult task because certain parts of the face are hidden. As a result, face identification and identity verification in the access system became difficult. In this paper, we propose a system that can detect masked face using transfer learning of Yolov5s and recognize the user using transfer learning of Facenet. Transfer learning preforms by changing the learning rate, epoch, and batch size, their results are evaluated, and the best model is selected as representative model. It has been confirmed that the proposed model is good at detecting masked face and masked face recognition.

은닉 물체 검출을 위한 실시간 수동형 밀리미터파 영상 분할 (Real-time passive millimeter wave image segmentation for concealed object detection)

  • 이동수;염석원;이문교;정상원;장유신
    • 한국통신학회논문지
    • /
    • 제37권2C호
    • /
    • pp.181-187
    • /
    • 2012
  • 밀리미터파 영상시스템은 의복을 투과하는 성질이 뛰어나서 의복 속에 숨겨둔 은닉 물체를 탐지하는 분야에 활용된다. 더불어 수동형 밀리미터파 영상 시스템은 능동형 시스템과 달리 실내외의 개방된 공간에서 움직이는 대상자들의 탐지가 가능하다. 그러나 수동형 밀리미터파 영상은 일반적으로 회절의 제한과 낮은 신호 레벨로 해상도가 낮으며 잡음의 영향이 크다. 그러므로 영상을 효과적으로 처리하기 위한 신호의 모델링과 통계적 분석이 요구된다. 본 논문에서 은닉 물체 검출을 수행하는 밀리미터파 영상 분할 알고리즘을 C++로 구현하여 실시간으로 처리한다. 영상의 분석을 위하여 밀리미터파 영상의 히스토그램을 혼합 가우시안 모델로 추정하고 은닉 물체를 다단계 영상 분할 방법으로 추출한다. 다단계 분할은 배경에서 몸체를 분리하는 전역분할과 은닉물체를 몸체에서 분리하는 국소분할로 이루어진다. 각 분할단계는 $k$-means, EM 추정, 판정단계로 구성되어 있다. 실험에서 실외에서 획득한 수동형 밀리미터파 영상을 분석하여 은닉 물체를 실시간으로 검출할 수 있음을 확인한다.

Improve object recognition using UWB SAR imaging with compressed sensing

  • Pham, The Hien;Hong, Ic-Pyo
    • 전기전자학회논문지
    • /
    • 제25권1호
    • /
    • pp.76-82
    • /
    • 2021
  • In this paper, the compressed sensing basic pursuit denoise algorithm adopted to synthetic aperture radar imaging is investigated to improve the object recognition. From the incomplete data sets for image processing, the compressed sensing algorithm had been integrated to recover the data before the conventional back- projection algorithm was involved to obtain the synthetic aperture radar images. This method can lead to the reduction of measurement events while scanning the objects. An ultra-wideband radar scheme using a stripmap synthetic aperture radar algorithm was utilized to detect objects hidden behind the box. The Ultra-Wideband radar system with 3.1~4.8 GHz broadband and UWB antenna were implemented to transmit and receive signal data of two conductive cylinders located inside the paper box. The results confirmed that the images can be reconstructed by using a 30% randomly selected dataset without noticeable distortion compared to the images generated by full data using the conventional back-projection algorithm.