본 논문은 DWT에너지 기반의 연기 검출 방법을 제안하였다. 일반적으로 연기는 형태가 명확하지 않고 주변 환경에 의하여 색상, 형태, 확산방향 등의 특징이 가변적이기 때문에 특정 정보만을 이용할 경우에는 오검출율이 높아진다. 따라서 본 논문에서는 환경변화에 강인한 전경 추출 방법을 이용하여 객체를 검출하고 추출된 객체의 색상, 형태, DWT 에너지 정보를 통합적으로 사용하여 연기를 판단한다. 제안된 방법은 평균 30fps의 처리속도를 가지므로 실시간 처리가 가능하고 화재 발생 시점으로부터 연기 감지까지의 평균 소요시간이 약 7초로 빠른 조기감지가 가능하며 낮은 오검출율을 나타내었다.
본 논문에서는 은폐 물체 탐지를 위해 인체에 무해한 음향신호 중 파라메트릭 배열을 이용한 음향 탐지 시스템을 제안한다. 제안된 탐지 시스템은 파라메트릭 배열 현상으로부터 생성되는 고 지향성 Chirp 신호를 송신신호로 사용하고, Dechirp 처리 과정을 통해 수신신호의 신호 대 잡음비를 개선하여 거리 분해능을 향상시키는 기법을 사용한다. 제안된 파라메트릭 배열 시스템의 송신센서는 $8{\times}2$ 배열로 구축하였으며, 센서 배열의 빔 폭은 수평방향 약 $7^{\circ}$와 수직방향 약 $26^{\circ}$를 형성한다. 제안된 시스템을 검증하기 위해 물체 탐지 및 가시화를 위한 2축 구동 제어 선형 스테이지를 구축하였으며, 이를 이용하여 은폐된 물체에 대한 A-scan, B-scan 및 C-scan 실험을 진행하였다. 실험 결과, 천에 은폐된 동판과 파이프를 탐지하고 형상을 확인하였으며, 가시화된 형상에서 동판은 $0.015m^2$, 파이프는 $0.046m^2$의 오차를 보여주었다.
Hidden line removal(HLR) algorithms can be devised either in the image space or in the object space. This paper describes a hidden line removal algorithm in the object space specifically for the CAD viewer data. The approach is based on the Appel's 'Quantitative Invisibility' algorithm and fundamental concept of 'back face culling'. Input data considered in this algorithm can be distinguished from those considered for HLR algorithm in general. The original QI algorithm can be applied for the polyhedron models. During preprocessing step of our proposed algorithm, the self intersecting surfaces in the view direction are divided along the silhouette curves so that the QI algorithm can be applied. By this way the algorithm can be used for any triangulated freeform surfaces. A major advantage of this algorithm is the applicability to general CAD models and surface-based visualization data.
최근 동영상에서의 객체추적을 위해 주파수변환을 적용하는 연구가 발표되고 있다. 동영상에서 객체는 형상이 조금씩 변할 수 있다. ASEF, MOSSE와 같은 주파수변환을 통한 객체 추적 기법은 객체의 형상이 변하는 것에 대응하기 위해 추적에 사용되는 검출필터를 갱신하는 기능을 포함하고 있다. 그러나 객체의 형상이 변하는 객체 추적을 위한 이러한 주파수변환 기반 객체 추적방법들은 추적 대상 객체가 다른 물체에 의해 대부분이 일시적으로 가려진 후 형상이 변한 후에 인근의 다른 위치에 나타나는 경우, 추적에 실패하는 경우가 종종 발생한다. 본 논문에서는 추적 대상 객체가 다른 물체에 의해 가려지는 상황에 따라 필터갱신을 적응적으로 수행하고 이동경로와 주변정보를 활용함으로써 추적 대상객체가 가려지는 상황에서도 추적 실패를 줄일 수 있는 객체 탐색 기법을 제안한다.
We present an experimental implementation of the inexpensive microwave security sensor that can detect both static and slowly moving objects in cluttered environment. The prototype consists of a frequency-modulated continuous wave radar sensor, control board or computer and software. The prototype was tested in a cluttered indoor environment. In case of intrusion or change of environment the sensor will give an alarm, determine the location of new object, change in its location and can detect a slowly moving target. To make a low-cost unit we use commercially available automotive radar and own signal processing techniques for object detection and tracking. The intruder detection is based on a comparison between current 'image' in memory and 'no-intrusion' reference image. The main challenge is to develop a reliable technique for detection of a relatively low-magnitude object signals hidden in multipath clutter echo signals. Various experimental measurements and computations have shown the feasibility and performance of the system.
In this paper, we propose the fusion design methodology of both pedestrian detection and object tracking system realized with the aid of HOG-PCA based RBFNN pattern classifier. The proposed system includes detection and tracking parts. In the detection part, HOG features are extracted from input images for pedestrian detection. Dimension reduction is also dealt with in order to improve detection performance as well as processing speed by using PCA which is known as a typical dimension reduction method. The reduced features can be used as the input of the FCM-based RBFNNs pattern classifier to carry out the pedestrian detection. FCM-based RBFNNs pattern classifier consists of condition, conclusion, and inference parts. FCM clustering algorithm is used as the activation function of hidden layer. In the conclusion part of network, polynomial functions such as constant, linear, quadratic and modified quadratic are regarded as connection weights and their coefficients of polynomial function are estimated by LSE-based learning. In the tracking part, object tracking algorithms such as mean shift(MS) and cam shift(CS) leads to trace one of the pedestrian candidates nominated in the detection part. Finally, INRIA person database is used in order to evaluate the performance of the pedestrian detection of the proposed system while MIT pedestrian video as well as indoor and outdoor videos obtained from IC&CI laboratory in Suwon University are exploited to evaluate the performance of tracking.
이 논문은 영상 카메라를 이용하여 교통 객체를 인식하고자 하는 경우, 영상 내 객체 인식 정확도를 높이기 위해 소실점을 이용하여 객체에 대한 3D 바운딩 박스를 생성하는 방법이다. 최근 인공지능을 이용하여 교통 영상 카메라로 촬영된 차량을 검출하고자 하는 경우 이 3D 바운딩 박스 생성 알고리즘을 적용하고자 한다. 카메라 설치 각도와 카메라가 촬영한 영상의 방향성을 분석하여 종 방향 소실점(VP1)과 횡 방향 소실점(VP2)을 도출하고 이를 기반으로 분석 대상 동영상에서 이동하는 객체를 특정하게 된다. 이 알고리즘을 적용하면 감지된 객체의 위치, 종류, 크기 등 객체 정보 검출이 용이하고, 이를 자동차와 같은 이동류에 적용하는 경우 이를 트래킹하여 각 객체가 이동한 위치와 좌표, 이동속도 및 방향 등을 알 수 있다. 실제 도로에 적용한 결과 트래킹이 10% 향상되었으며 특히 음영지역(큰 차에 가려진 극히 적은 차량 부위)의 인식율과 트래킹이 100% 개선되는 등 교통 데이터 분석 정확성을 향상시킬 수 있었다.
International Journal of Advanced Culture Technology
/
제10권1호
/
pp.294-301
/
2022
COVID-19 is a crisis with numerous casualties. The World Health Organization (WHO) has declared the use of masks as an essential safety measure during the COVID-19 pandemic. Therefore, whether or not to wear a mask is an important issue when entering and exiting public places and institutions. However, this makes face recognition a very difficult task because certain parts of the face are hidden. As a result, face identification and identity verification in the access system became difficult. In this paper, we propose a system that can detect masked face using transfer learning of Yolov5s and recognize the user using transfer learning of Facenet. Transfer learning preforms by changing the learning rate, epoch, and batch size, their results are evaluated, and the best model is selected as representative model. It has been confirmed that the proposed model is good at detecting masked face and masked face recognition.
밀리미터파 영상시스템은 의복을 투과하는 성질이 뛰어나서 의복 속에 숨겨둔 은닉 물체를 탐지하는 분야에 활용된다. 더불어 수동형 밀리미터파 영상 시스템은 능동형 시스템과 달리 실내외의 개방된 공간에서 움직이는 대상자들의 탐지가 가능하다. 그러나 수동형 밀리미터파 영상은 일반적으로 회절의 제한과 낮은 신호 레벨로 해상도가 낮으며 잡음의 영향이 크다. 그러므로 영상을 효과적으로 처리하기 위한 신호의 모델링과 통계적 분석이 요구된다. 본 논문에서 은닉 물체 검출을 수행하는 밀리미터파 영상 분할 알고리즘을 C++로 구현하여 실시간으로 처리한다. 영상의 분석을 위하여 밀리미터파 영상의 히스토그램을 혼합 가우시안 모델로 추정하고 은닉 물체를 다단계 영상 분할 방법으로 추출한다. 다단계 분할은 배경에서 몸체를 분리하는 전역분할과 은닉물체를 몸체에서 분리하는 국소분할로 이루어진다. 각 분할단계는 $k$-means, EM 추정, 판정단계로 구성되어 있다. 실험에서 실외에서 획득한 수동형 밀리미터파 영상을 분석하여 은닉 물체를 실시간으로 검출할 수 있음을 확인한다.
In this paper, the compressed sensing basic pursuit denoise algorithm adopted to synthetic aperture radar imaging is investigated to improve the object recognition. From the incomplete data sets for image processing, the compressed sensing algorithm had been integrated to recover the data before the conventional back- projection algorithm was involved to obtain the synthetic aperture radar images. This method can lead to the reduction of measurement events while scanning the objects. An ultra-wideband radar scheme using a stripmap synthetic aperture radar algorithm was utilized to detect objects hidden behind the box. The Ultra-Wideband radar system with 3.1~4.8 GHz broadband and UWB antenna were implemented to transmit and receive signal data of two conductive cylinders located inside the paper box. The results confirmed that the images can be reconstructed by using a 30% randomly selected dataset without noticeable distortion compared to the images generated by full data using the conventional back-projection algorithm.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.