• Title/Summary/Keyword: Hidden markov model

Search Result 641, Processing Time 0.02 seconds

Distance Measures in HMM Clustering for Large-scale On-line Chinese Character Recognition (대용량 온라인 한자 인식을 위한 클러스터링 거리계산 척도)

  • Kim, Kwang-Seob;Ha, Jin-Young
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.9
    • /
    • pp.683-690
    • /
    • 2009
  • One of the major problems that prevent us from building a good recognition system for large-scale on-line Chinese character recognition using HMMs is increasing recognition time. In this paper, we propose a clustering method to solve recognition speed problem and an efficient distance measure between HMMs. From the experiments, we got about twice the recognition speed and 95.37% 10-candidate recognition accuracy, which is only 0.9% decrease, for 20,902 Chinese characters defined in Unicode CJK unified ideographs.

Online Character Recognition Technique Using PCA (PCA를 이용한 온라인 문자인식 기법)

  • Yoo Jae-Man;Kim Woo-Saeng;Han Jeong-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.4
    • /
    • pp.414-420
    • /
    • 2006
  • Online character recognition techniques have been applied in many new fields of PDA, Tablet PC etc. But the recognition techniques can not use such high technologies naturally yet. Hidden Markov Model (HMM) that is much used recently requires high memory space and complex computational tasks because of comparing the input data with entire standard patterns. In this paper we propose a method to recognize the online characters more efficiently. At first we create chain-codes of learning data and recognition data in preprocessing phase, and then we compress dimensions of data using Principal Component Analysis (PCA) and recognize a character compressed data in recognition phrase. Validity of proposed method .is verified. by experiment results.

  • PDF

Real-time Multiple People Tracking using Competitive Condensation (경쟁적 조건부 밀도 전파를 이용한 실시간 다중 인물 추적)

  • 강희구;김대진;방승양
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.7_8
    • /
    • pp.713-718
    • /
    • 2003
  • The CONDENSATION (Conditional Density Propagation) algorithm has a robust tracking performance and suitability for real-time implementation. However, the CONDENSATION tracker has some difficulties with real-time implementation for multiple people tracking since it requires very complicated shape modeling and a large number of samples for precise tracking performance. Further, it shows a poor tracking performance in the case of close or partially occluded people. To overcome these difficulties, we present three improvements: First, we construct effective templates of people´s shapes using the SOM (Self-Organizing Map). Second, we take the discrete HMM (Hidden Markov Modeling) for an accurate dynamical model of the people´s shape transition. Third, we use the competition rule to separate close or partially occluded people effectively. Simulation results shows that the proposed CONDENSATION algorithm can achieve robust and real-time tracking in the image sequences of a crowd of people.

Connected Korean Digit Speech Recognition Using Vowel String and Number of Syllables (음절수와 모음 열을 이용한 한국어 연결 숫자 음성인식)

  • Youn, Jeh-Seon;Hong, Kwang-Seok
    • The KIPS Transactions:PartA
    • /
    • v.10A no.1
    • /
    • pp.1-6
    • /
    • 2003
  • In this paper, we present a new Korean connected digit recognition based on vowel string and number of syllables. There are two steps to reduce digit candidates. The first one is to determine the number and interval of digit. Once the number and interval of digit are determined, the second is to recognize the vowel string in the digit string. The digit candidates according to vowel string are recognized based on CV (consonant vowel), VCCV and VC unit HMM. The proposed method can cope effectively with the coarticulation effects and recognize the connected digit speech very well.

Fast computation of Observation Probability for Speaker-Independent Real-Time Speech Recognition (실시간 화자독립 음성인식을 위한 고속 확률계산)

  • Park Dong-Chul;Ahn Ju-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9C
    • /
    • pp.907-912
    • /
    • 2005
  • An efficient method for calculation of observation probability in CDHMM(Continous Density Hidden Markov Model) is proposed in this paper. the proposed algorithm, called FCOP(Fast Computation of Observation Probability), approximate obsewation probabilities in CDHMM by eliminating insignificant PDFs(Probability Density Functions) and reduces the computational load. When applied to a speech recognition system, the proposed FCOP algorithm can reduce the instruction cycles by $20\%-30\%$ and can also increase the recognition speed about $30\%$ while minimizing the loss in its recognition rate. When implemented on a practical cellular phone, the FCOP algorithm can increase its recognition speed about $30\%$ while suffering $0.2\%$ loss in recognition rate.

A Study on the Redundancy Reduction in Speech Recognition (음성인식에서 중복성의 저감에 대한 연구)

  • Lee, Chang-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.3
    • /
    • pp.475-483
    • /
    • 2012
  • The characteristic features of speech signal do not vary significantly from frame to frame. Therefore, it is advisable to reduce the redundancy involved in the similar feature vectors. The objective of this paper is to search for the optimal condition of minimum redundancy and maximum relevancy of the speech feature vectors in speech recognition. For this purpose, we realize redundancy reduction by way of a vigilance parameter and investigate the resultant effect on the speaker-independent speech recognition of isolated words by using FVQ/HMM. Experimental results showed that the number of feature vectors might be reduced by 30% without deteriorating the speech recognition accuracy.

A Real-Time Implementation of Speech Recognition System Using Oak DSP core in the Car Noise Environment (자동차 환경에서 Oak DSP 코어 기반 음성 인식 시스템 실시간 구현)

  • Woo, K.H.;Yang, T.Y.;Lee, C.;Youn, D.H.;Cha, I.H.
    • Speech Sciences
    • /
    • v.6
    • /
    • pp.219-233
    • /
    • 1999
  • This paper presents a real-time implementation of a speaker independent speech recognition system based on a discrete hidden markov model(DHMM). This system is developed for a car navigation system to design on-chip VLSI system of speech recognition which is used by fixed point Oak DSP core of DSP GROUP LTD. We analyze recognition procedure with C language to implement fixed point real-time algorithms. Based on the analyses, we improve the algorithms which are possible to operate in real-time, and can verify the recognition result at the same time as speech ends, by processing all recognition routines within a frame. A car noise is the colored noise concentrated heavily on the low frequency segment under 400 Hz. For the noise robust processing, the high pass filtering and the liftering on the distance measure of feature vectors are applied to the recognition system. Recognition experiments on the twelve isolated command words were performed. The recognition rates of the baseline recognizer were 98.68% in a stopping situation and 80.7% in a running situation. Using the noise processing methods, the recognition rates were enhanced to 89.04% in a running situation.

  • PDF

Voice transformation for HTS using correlation between fundamental frequency and vocal tract length (기본주파수와 성도길이의 상관관계를 이용한 HTS 음성합성기에서의 목소리 변환)

  • Yoo, Hyogeun;Kim, Younggwan;Suh, Youngjoo;Kim, Hoirin
    • Phonetics and Speech Sciences
    • /
    • v.9 no.1
    • /
    • pp.41-47
    • /
    • 2017
  • The main advantage of the statistical parametric speech synthesis is its flexibility in changing voice characteristics. A personalized text-to-speech(TTS) system can be implemented by combining a speech synthesis system and a voice transformation system, and it is widely used in many application areas. It is known that the fundamental frequency and the spectral envelope of speech signal can be independently modified to convert the voice characteristics. Also it is important to maintain naturalness of the transformed speech. In this paper, a speech synthesis system based on Hidden Markov Model(HMM-based speech synthesis, HTS) using the STRAIGHT vocoder is constructed and voice transformation is conducted by modifying the fundamental frequency and spectral envelope. The fundamental frequency is transformed in a scaling method, and the spectral envelope is transformed through frequency warping method to control the speaker's vocal tract length. In particular, this study proposes a voice transformation method using the correlation between fundamental frequency and vocal tract length. Subjective evaluations were conducted to assess preference and mean opinion scores(MOS) for naturalness of synthetic speech. Experimental results showed that the proposed voice transformation method achieved higher preference than baseline systems while maintaining the naturalness of the speech quality.

Two-Level Part-of-Speech Tagging for Korean Text Using Hidden Markov Model (은닉 마르코프 모델을 이용한 두단계 한국어 품사 태깅)

  • Lee, Sang-Zoo;Lim, Heui-Suk;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 1994.11a
    • /
    • pp.305-312
    • /
    • 1994
  • 품사 태깅은 코퍼스에 정확한 품사 정보를 첨가하는 작업이다. 많은 단어는 하나 이상의 품사를 갖는 중의성이 있으며, 품사 태깅은 지역적 문맥을 이용하여 품사 중의성을 해결한다. 한국어에서 품사 중의성은 다양한 원인에 의해서 발생한다. 일반적으로 동형 이품사 형태소에 의해 발생되는 품사 중의성은 문맥 확률과 어휘 확률에 의해 해결될 수 있지만, 이형 동품사 형태소에 의해 발생되는 품사 중의성은 상호 정보나 의미 정보가 있어야만 해결될 수 있다. 그리나, 기존의 한국어 품사 태깅 방법은 문맥 확률과 어휘 확률만을 이용하여 모든 품사 중의성을 해결하려 하였다. 본 논문은 어절 태깅 단계에서는 중의성을 최소화하고, 형태소 태깅 단계에서는 최소화된 중의성 중에서 하나를 결정하는 두단계 태깅 방법을 제시한다. 제안된 어절 태깅 방법은 단순화된 어절 태그를 이용하므로 품사 집합에 독립적이면, 대량의 어절을 소량의 의사 부류에 사상하므로 통계 정보의 양이 적다. 또한, 은닉 마르코프 모델을 이용하므로 태깅되지 않은 원시 코퍼스로부터 학습이 가능하며, 적은 수의 파라메터와 Viterbi 알고리즘을 이용하므로 태깅 속도가 효율적이다.

  • PDF

Betterment of Mobile Sign Language Recognition System (모바일 수화 인식 시스템의 개선에 관한 연구)

  • Park Kwang-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.4 s.310
    • /
    • pp.1-10
    • /
    • 2006
  • This paper presents a development of a mobile sign language recognition system for daily communication of deaf people, who are sign dependent to access language, with hearing people. The system observes their sign by a cap-mounted camera and accelerometers equipped on wrists. To create a real application working in mobile environment, which is a harder recognition problem than lab environment due to illumination change and real-time requirement, a robust hand segmentation method is introduced and HMMs are adopted with a strong grammar. The result shows 99.07% word accuracy in continuous sign.