음성 인식을 위해 추출되는 특징벡터 중 일부는 드물게 나타나는 특이 패턴이다. 이들은 음성인식 시스템의 훈련에서 파라미터의 과도맞춤을 일으키며, 그 결과 새로운 입력 패턴의 인식을 저해하는 구조적 위험을 초래한다. 본 논문에서는 이러한 특이 패턴을 제거하는 하나의 방법으로서, 어느 크기 이상의 벡터를 제외시켜 음성인식 시스템의 훈련을 수행하는 방법에 대해 연구한다. 본 연구의 목적은 인식률을 저해시키지 않는 한도에서 가장 많은 특이 특징벡터를 제외시키는 것이다. 이를 위하여 우리는 하나의 절단 파라미터를 도입하고, 그 값의 변화가 FVQ(Fuzzy Vector Quantization)/HMM(Hidden Markov Model)을 사용한 화자독립 음성 인식에 미치는 영향을 조사하였다. 실험 결과, 인식률을 저하시키지 않는 특이 특징벡터의 수가 3%~6% 정도임을 확인하였다.
중력 방향에 대한 가중치를 적용한 3축 가속도 센서 데이터를 낙상 특징 변수로 사용해서 은닉 마르코프 모델(Hidden Markov Model; HMM)에 적용한 새로운 낙상 인식 알고리듬을 제안한다. 기존에 낙상인식에 많이 사용되는 변수인 3축 가속도의 벡터 합(Sum Vector Magnitude, SVM)과 새롭게 정의한 변수인 중력방향가중치를 적용한 3축 가속도의 벡터 합(Gravity-weighted Sum Vector Magnitude, GSVM)를 포함한 다섯 가지 낙상특징변수를 은닉 마르코프 모델에 적용하여 낙상 인식률을 평가하였다. 실험을 통해 얻은 가장 좋은 결과는 중력방향가중치를 적용한 3축 가속도의 벡터 합 변수를 적용한 결과이고 100% 민감도(sensitivity)와 97.96% 특이성(specificity)를 얻었다. 이것은 단순 3축 가속도의 벡터 합 변수에 비해 민감도는 5.2%와 특이성은 4.5% 정도 향상되었다. 단순히 운동량만을 표현하는 3축 가속도의 벡터 합 변수에 비해 중력방향가중치를 적용한 3축 가속도의 벡터 합 변수가 낙상의 움직임에 대한 특징을 잘 표현하기 때문에 높은 인식률을 나타내었다.
Generally, a mobile robot is moved by original input programs. However, it is very hard for a non-expert to change the program generating the moving path of a mobile robot, because he doesn't know almost the teaching command and operating method for driving the robot. Therefore, the teaching method with speech command for a handicapped person without hands or a non-expert without an expert knowledge to generate the path is required gradually. In this study, for easily teaching the moving path of the autonomous mobile robot, the autonomous mobile robot with the function of speech recognition is developed. The use of human voice as the teaching method provides more convenient user-interface for mobile robot. To implement the teaching function, the designed robot system is composed of three separated control modules, which are speech preprocessing module, DC servo motor control module, and main control module. In this study, we design and implement a speaker dependent isolated word recognition system for creating moving path of an autonomous mobile robot in the unknown environment. The system uses word-level Hidden Markov Models(HMM) for designated command vocabularies to control a mobile robot, and it has postprocessing by neural network according to the condition based on confidence score. As the spectral analysis method, we use a filter-bank analysis model to extract of features of the voice. The proposed word recognition system is tested using 33 Korean words for control of the mobile robot navigation, and we also evaluate the performance of navigation of a mobile robot using only voice command.
영상 정보를 이용한 자동 낙상 감지 알고리즘을 제안한다. 자동으로 낙상을 감지하기 위한 낙상 특징 파라미터를 추출하기 위해서 영상정보를 광류 방식에 적용하여 움직임 값들을 추출하고 이 움직임 값들에 대한 전체적인 변화의 정도와 기울기, 중심점을 주성분 분석 방법으로 계산한다. 계산된 고유값과 고유 벡터를 사용하여 6가지 낙상 특징 파라미터를 정의한다. 이 낙상특징파라미터가 미리 정해둔 임계값을 초과하는 경우를 낙상으로 판단하는 단순 임계치 방법과 낙상특징파라미터를 은닉 마르코프 모델(Hidden Markov Model; HMM)에 적용시켜 낙상을 판단하는 방법과 단순임계치와 은닉 마르코프 모델을 결합한 낙상 감지 방법을 제안하고 그 결과를 비교 및 분석한다. 단순 임계치와 은닉 마르코프 모델을 결합한 방법은 단순임계치 방법으로 낙상 가능한 행동들을 결정하고 이 결정된 낙상 행동들만을 은닉 마르코프 모델을 적용하여 낙상을 감지한다. 이 방법은 계산량을 줄이면서 감지 정확도를 유지하는 결과를 보인다.
IoT의 핵심 요소 기술 중 하나인 Bluetooth를 전기차 무선 충전 시스템에 사용하는 경우가 늘어나면서 이에 대한 보안 문제가 큰 이슈로 부각되고 있다. 무선 통신 기술인 Bluetooth에 보안을 강화하기 위한 다양한 기술적 노력이 있어 왔지만 여전히 다양한 공격 방법이 존재한다. 본 논문은 Bluetooth 시스템을 대상으로 대표적인 2가지 공격 방법을 지능적으로 탐지하기 위해 잘 알려진 Hidden Markov Model을 이용한 지능형 Bluetooth 침입 탐지 시스템을 제안한다. 제안 방법은 탐지의 정확성 이외에 실시간 탐지가 가능하도록 Bluetooth 전송 계층 프로토코인 H4의 패킷 타입과 전송 방향을 조합하고 이들의 시간상의 전개를 특징으로 사용한다. 데이터 수집 환경을 구성하고 실험을 통해 얻은 데이터를 대상으로 개발한 시스템의 성능을 분석한다.
Intelligent monitoring, life entertainment, medical rehabilitation, and other fields are only a few examples where visual image technology is becoming increasingly sophisticated and playing a significant role. Recognizing Wushu, or martial arts, movements through the use of visual image technology helps promote and develop Wushu. In order to segment and extract the signals of Wushu movements, this study analyzes the denoising of the original data using the wavelet transform and provides a sliding window data segmentation technique. Wushu movement The Wushu movement recognition model is built based on the hidden Markov model (HMM). The HMM model is trained and taught with the help of the Baum-Welch algorithm, which is then enhanced using the frequency weighted training approach and the mean training method. To identify the dynamic Wushu movement, the Viterbi algorithm is used to determine the probability of the optimal state sequence for each Wushu movement model. In light of the foregoing, an HMM-based martial arts movements recognition model is developed. The recognition accuracy of the HMM model increases to 99.60% when the number of samples is 4,000, which is greater than the accuracy of the SVM (by 0.94%), the CNN (by 1.12%), and the BP (by 1.14%). From what has been discussed, it appears that the suggested system for detecting martial arts acts is trustworthy and effective, and that it may contribute to the growth of martial arts.
본 논문에서는 음성과 자연언어의 통합처리를 위한 효과적인 병렬계산모델을 제안한다. 음소모델은 연속 Hidden Markov Model(HMM)에 기반을 둔 문맥종속형 음소를 사용하며, 언어모델은 지식베이스를 기반으로 한다. 또한 지식베이스를 구성하기 위해 계층구조의 semantic network과 병렬 marker-passing을 추론 메카니즘으로 쓰는 memory-based parsing 기술을 사용한다. 본 연구의 병렬 음성인식 알고리즘은 분산메모리 MIMD(Multiple Instruction Multiple Data) 구조의 다중 Transputer 시스템을 이용하여 구현되었다. 실험결과, 본 연구의 지식베이스 기반 음성인식 시스템의 인식률이 word network 기반 음성인식 시스템보다 높게 나타났으며 code-phoneme 통계정보를 활용하여 인식성능의 향상도 얻을 수 있었다. 또한, 성능향상도(speedup) 관련 실험들을 통하여 병렬 음성인식 시스템의 실시간 구현 가능성을 확인하였다.
The matching probability P(ο/$\lambda$), of the signal sequence(ο) observed for a finite time interval with a HMM (Hidden Markov Model $\lambda$) indicates the probability that signal comes from the given model. By utilizing the fact that the probability represents matching score of the observed signal with the model we can recognize an unknown signal pattern by comparing the magnitudes of the matching probabilities with respect to the known models. Because the algorithm however uses floating point variables during the computing process hardware implementation of the algorithm requires floating point units. This paper proposes an integer algorithm which uses positive integer numbers rather than float point ones to compute the matching probability so that we can economically realize the algorithm into hardware. The algorithm makes the model parameters integer numbers by multiplying positive constants and prevents from divergence of data through the normalization of variables at each step. The final equation of matching probability is composed of constant terms and a variable term which contains logarithm operations. A scheme to make the log conversion table smaller is also presented. To analyze the qualitive characteristics of the proposed algorithm we attatch simulation result performed on two groups of 10 hypothetic models respectively and inspect the statistical properties with repect to the model order the magnitude of scaling constants and the effect of the observation length.
풍력발전단지 위치 선정에 있어 풍속 분포 및 발전량을 평가하기 위해 해당 지역의 기상 타워에서 계측된 바람 자료를 이용한다. 그러나 기상 타워에서 계측된 바람 자료는 종종 정보가 누락되거나 원하는 높이에 맞지 않거나, 혹은 데이터 길이가 충분하지 않아 풍력터빈 제어 및 성능 시뮬레이션 수행에 어려움을 겪게 된다. 따라서 풍력터빈 혹은 발전단지에 대한 연간 발전량 및 이용률을 평가하는데 원하는 높이에서 장기간의 연속적인 바람 자료는 매우 중요하다. 또한, 한반도와 같이 계절에 따른 풍향과 풍속 변동이 뚜렷한 경우에는 계절별 특징이 고려된 풍속과 풍향을 동반한 바람 자료를 고려해야 한다. 본 연구에서는 통계적 방법인 은닉 마르코프 모델을 이용하여 풍속과 풍향의 변동을 고려한 인공 바람을 생성하기 위한 방법을 제시한다. 통계처리를 위한 바람 자료는 전라북도 고군산군도에 있는 말도의 기상청 방재기상관측(AWS) 장비에서 계측된 자료를 사용한다. 은닉 마르코프 모델에 의해 생성된 인공 바람은 통계 변수, 풍력에너지밀도, 계절별 평균 풍속, 주 풍향 등을 계측 자료와 비교를 통해 검증하기로 한다.
HMM이 시계열 모델로써 우수함이 널리 입증되면서 이차원 모델로 확장해 보려는 연구 결과도 늘어났지만 아직까지 임의의 객 체 패턴의 다양한 변형을 모델링하기에는 너무 단순한 경우가 대부분이다. 따라서 HMM이 시계열 데이터에서 보여준 성과를 영상 데이터에서 기대하기는 어렵다. 즉, 아직 대부분의 모델이 2D HMM으로 보기에는 부족하다고 판단된다. 본 논문에서 제안하는 모델은 이 차원 공간에서 상하, 좌우 방향의 진행 관계(causality)가 존재하는 은닉 마르코프 격자 또는 HML이다. 여기에 격자 구성 조건을 추가하여 모델 평가와 디코딩, 그리고 MLE 매개변수 추정법에 의한 훈련 알고리즘을 이론적으로 유도, 개발하였다. 본 모델은 기존의 필드형 모델과 달리 필기 문자 영상과 같이 다양한 국소적 형태 변형을 효과적으로 모델링하는 유용한 방법으로 사용될 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.