• Title/Summary/Keyword: Hidden markov model

Search Result 641, Processing Time 0.03 seconds

Gait State Classification by HMMS for Pedestrian Inertial Navigation System (보행용 관성 항법 시스템을 위한 HMMS를 통한 걸음 단계 구분)

  • Park, Sang-Kyeong;Suh, Young-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.1010-1018
    • /
    • 2009
  • An inertial navigation system for pedestrian position tracking is proposed, where the position is computed using inertial sensors mounted on shoes. Inertial navigation system(INS) errors increase with time due to inertial sensor errors, and therefore it needs to reset errors frequently. During normal walking, there is an almost periodic zero velocity instance when a foot touches the floor. Using this fact, estimation errors are reduced and this method is called the zero velocity updating algorithm. When implementing this zero velocity updating algorithm, it is important to know when is the zero velocity interval. The gait states are modeled as a Markov process and each state is estimated using the hidden Markov model smoother. With this gait estimation, the zero or nearly zero velocity interval is more accurately estimated, which helps to reduce the position estimation error.

A study on user defined spoken wake-up word recognition system using deep neural network-hidden Markov model hybrid model (Deep neural network-hidden Markov model 하이브리드 구조의 모델을 사용한 사용자 정의 기동어 인식 시스템에 관한 연구)

  • Yoon, Ki-mu;Kim, Wooil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.2
    • /
    • pp.131-136
    • /
    • 2020
  • Wake Up Word (WUW) is a short utterance used to convert speech recognizer to recognition mode. The WUW defined by the user who actually use the speech recognizer is called user-defined WUW. In this paper, to recognize user-defined WUW, we construct traditional Gaussian Mixture Model-Hidden Markov Model (GMM-HMM), Linear Discriminant Analysis (LDA)-GMM-HMM and LDA-Deep Neural Network (DNN)-HMM based system and compare their performances. Also, to improve recognition accuracy of the WUW system, a threshold method is applied to each model, which significantly reduces the error rate of the WUW recognition and the rejection failure rate of non-WUW simultaneously. For LDA-DNN-HMM system, when the WUW error rate is 9.84 %, the rejection failure rate of non-WUW is 0.0058 %, which is about 4.82 times lower than the LDA-GMM-HMM system. These results demonstrate that LDA-DNN-HMM model developed in this paper proves to be highly effective for constructing user-defined WUW recognition system.

A New Feature for Speech Segments Extraction with Hidden Markov Models (숨은마코프모형을 이용하는 음성구간 추출을 위한 특징벡터)

  • Hong, Jeong-Woo;Oh, Chang-Hyuck
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.2
    • /
    • pp.293-302
    • /
    • 2008
  • In this paper we propose a new feature, average power, for speech segments extraction with hidden Markov models, which is based on mel frequencies of speech signals. The average power is compared with the mel frequency cepstral coefficients, MFCC, and the power coefficient. To compare performances of three types of features, speech data are collected for words with explosives which are generally known hard to be detected. Experiments show that the average power is more accurate and efficient than MFCC and the power coefficient for speech segments extraction in environments with various levels of noise.

Image Dehazing using Transmission Map Based on Hidden Markov Random Field Model (은닉 마코프 랜덤 모델 기반의 전달 맵을 이용한 안개 제거)

  • Lee, Min-Hyuk;Kwon, Oh-Seol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.145-151
    • /
    • 2014
  • This paper proposes an image haze removal algorithm for a single image. The conventional Dark Channel Prior(DCP) algorithm estimates a transmission map using the dark information in an image, and the haze regions are then detected using a matting algorithm. However, since the DCP algorithm uses block-based processing, block artifacts are invariably formed in the transmission map. To solve this problem, the proposed algorithm generates a modified transmission map using a Hidden Markov Random Field(HMRF) and Expectation-Maximization(EM) algorithm. Experimental results confirm that the proposed algorithm is superior to conventional algorithms in image haze removal.

Human Activity Recognition Using Spatiotemporal 3-D Body Joint Features with Hidden Markov Models

  • Uddin, Md. Zia;Kim, Jaehyoun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2767-2780
    • /
    • 2016
  • Video-based human-activity recognition has become increasingly popular due to the prominent corresponding applications in a variety of fields such as computer vision, image processing, smart-home healthcare, and human-computer interactions. The essential goals of a video-based activity-recognition system include the provision of behavior-based information to enable functionality that proactively assists a person with his/her tasks. The target of this work is the development of a novel approach for human-activity recognition, whereby human-body-joint features that are extracted from depth videos are used. From silhouette images taken at every depth, the direction and magnitude features are first obtained from each connected body-joint pair so that they can be augmented later with motion direction, as well as with the magnitude features of each joint in the next frame. A generalized discriminant analysis (GDA) is applied to make the spatiotemporal features more robust, followed by the feeding of the time-sequence features into a Hidden Markov Model (HMM) for the training of each activity. Lastly, all of the trained-activity HMMs are used for depth-video activity recognition.

An Acoustic Event Detection Method in Tunnels Using Non-negative Tensor Factorization and Hidden Markov Model (비음수 텐서 분해와 은닉 마코프 모델을 이용한 터널 환경에서의 음향 사고 검지 방법)

  • Kim, Nam Kyun;Jeon, Kwang Myung;Kim, Hong Kook
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.9
    • /
    • pp.265-273
    • /
    • 2018
  • In this paper, we propose an acoustic event detection method in tunnels using non-negative tensor factorization (NTF) and hidden Markov model (HMM) applied to multi-channel audio signals. Incidents in tunnel are inherent to the system and occur unavoidably with known probability. Incidents can easily happen minor accidents and extend right through to major disaster. Most incident detection systems deploy visual incident detection (VID) systems that often cause false alarms due to various constraints such as night obstacles and a limit of viewing angle. To this end, the proposed method first tries to separate and detect every acoustic event, which is assumed to be an in-tunnel incident, from noisy acoustic signals by using an NTF technique. Then, maximum likelihood estimation using Gaussian mixture model (GMM)-HMMs is carried out to verify whether or not each detected event is an actual incident. Performance evaluation shows that the proposed method operates in real time and achieves high detection accuracy under simulated tunnel conditions.

Dual-Channel Acoustic Event Detection in Multisource Environments Using Nonnegative Tensor Factorization and Hidden Markov Model (비음수 텐서 분해 및 은닉 마코프 모델을 이용한 다음향 환경에서의 이중 채널 음향 사건 검출)

  • Jeon, Kwang Myung;Kim, Hong Kook
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.1
    • /
    • pp.121-128
    • /
    • 2017
  • In this paper, we propose a dual-channel acoustic event detection (AED) method using nonnegative tensor factorization (NTF) and hidden Markov model (HMM) in order to improve detection accuracy of AED in multisource environments. The proposed method first detects multiple acoustic events by utilizing channel gains obtained from the NTF technique applied to dual-channel input signals. After that, an HMM-based likelihood ratio test is carried out to verify the detected events by using channel gains. The detection accuracy of the proposed method is measured by F-measures under 9 different multisource conditions. Then, it is also compared with those of conventional AED methods such as Gaussian mixture model and nonnegative matrix factorization. It is shown from the experiments that the proposed method outperforms the convectional methods under all the multisource conditions.

A Study on Modeling of Fighter Pilots Using a dPCA-HMM (dPCA-HMM을 이용한 전투기 조종사 모델링 연구)

  • Choi, Yerim;Jeon, Sungwook;Park, Jonghun;Shin, Dongmin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.1
    • /
    • pp.23-32
    • /
    • 2015
  • Modeling of fighter pilots, which is a fundamental technology for war games using defense M&S (Modeling & Simulation) becomes one of the prominent research issues as the importance of defense M&S increases. Especially, the recent accumulation of combat logs makes it possible to adopt statistical learning methods to pilot modeling, and an HMM (Hidden Markov Model) which is able to utilize the sequential characteristic of combat logs is suitable for the modeling. However, since an HMM works only by using one type of features, discrete or continuous, to apply an HMM to heterogeneous features, type integration is required. Therefore, we propose a dPCA-HMM method, where dPCA (Discrete Principal Component Analysis) is combined with an HMM for the type integration. From experiments conducted on combat logs acquired from a simulator furnished by agency for defense development, the performance of the proposed model is evaluated and was satisfactory.

Analysis and Prediction Algorithms on the State of User's Action Using the Hidden Markov Model in a Ubiquitous Home Network System (유비쿼터스 홈 네트워크 시스템에서 은닉 마르코프 모델을 이용한 사용자 행동 상태 분석 및 예측 알고리즘)

  • Shin, Dong-Kyoo;Shin, Dong-Il;Hwang, Gu-Youn;Choi, Jin-Wook
    • Journal of Internet Computing and Services
    • /
    • v.12 no.2
    • /
    • pp.9-17
    • /
    • 2011
  • This paper proposes an algorithm that predicts the state of user's next actions, exploiting the HMM (Hidden Markov Model) on user profile data stored in the ubiquitous home network. The HMM, recognizes patterns of sequential data, adequately represents the temporal property implicated in the data, and is a typical model that can infer information from the sequential data. The proposed algorithm uses the number of the user's action performed, the location and duration of the actions saved by "Activity Recognition System" as training data. An objective formulation for the user's interest in his action is proposed by giving weight on his action, and change on the state of his next action is predicted by obtaining the change on the weight according to the flow of time using the HMM. The proposed algorithm, helps constructing realistic ubiquitous home networks.

Face Emotion Recognition by Fusion Model based on Static and Dynamic Image (정지영상과 동영상의 융합모델에 의한 얼굴 감정인식)

  • Lee Dae-Jong;Lee Kyong-Ah;Go Hyoun-Joo;Chun Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.573-580
    • /
    • 2005
  • In this paper, we propose an emotion recognition using static and dynamic facial images to effectively design human interface. The proposed method is constructed by HMM(Hidden Markov Model), PCA(Principal Component) and wavelet transform. Facial database consists of six basic human emotions including happiness, sadness, anger, surprise, fear and dislike which have been known as common emotions regardless of nation and culture. Emotion recognition in the static images is performed by using the discrete wavelet. Here, the feature vectors are extracted by using PCA. Emotion recognition in the dynamic images is performed by using the wavelet transform and PCA. And then, those are modeled by the HMM. Finally, we obtained better performance result from merging the recognition results for the static images and dynamic images.