• Title/Summary/Keyword: Hidden layers

Search Result 253, Processing Time 0.024 seconds

Performance Comparison of Deep Feature Based Speaker Verification Systems (깊은 신경망 특징 기반 화자 검증 시스템의 성능 비교)

  • Kim, Dae Hyun;Seong, Woo Kyeong;Kim, Hong Kook
    • Phonetics and Speech Sciences
    • /
    • v.7 no.4
    • /
    • pp.9-16
    • /
    • 2015
  • In this paper, several experiments are performed according to deep neural network (DNN) based features for the performance comparison of speaker verification (SV) systems. To this end, input features for a DNN, such as mel-frequency cepstral coefficient (MFCC), linear-frequency cepstral coefficient (LFCC), and perceptual linear prediction (PLP), are first compared in a view of the SV performance. After that, the effect of a DNN training method and a structure of hidden layers of DNNs on the SV performance is investigated depending on the type of features. The performance of an SV system is then evaluated on the basis of I-vector or probabilistic linear discriminant analysis (PLDA) scoring method. It is shown from SV experiments that a tandem feature of DNN bottleneck feature and MFCC feature gives the best performance when DNNs are configured using a rectangular type of hidden layers and trained with a supervised training method.

Development of articulatory estimation model using deep neural network (심층신경망을 이용한 조음 예측 모형 개발)

  • You, Heejo;Yang, Hyungwon;Kang, Jaekoo;Cho, Youngsun;Hwang, Sung Hah;Hong, Yeonjung;Cho, Yejin;Kim, Seohyun;Nam, Hosung
    • Phonetics and Speech Sciences
    • /
    • v.8 no.3
    • /
    • pp.31-38
    • /
    • 2016
  • Speech inversion (acoustic-to-articulatory mapping) is not a trivial problem, despite the importance, due to the highly non-linear and non-unique nature. This study aimed to investigate the performance of Deep Neural Network (DNN) compared to that of traditional Artificial Neural Network (ANN) to address the problem. The Wisconsin X-ray Microbeam Database was employed and the acoustic signal and articulatory pellet information were the input and output in the models. Results showed that the performance of ANN deteriorated as the number of hidden layers increased. In contrast, DNN showed lower and more stable RMS even up to 10 deep hidden layers, suggesting that DNN is capable of learning acoustic-articulatory inversion mapping more efficiently than ANN.

Construction of the expanded I-PD control system by Neural network with two hidden layers (2개의 은닉층을 가진 신경망에 의한 확대 I-PD제어계의 구성)

  • 강동원;김대성;하홍곤;고태언
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.256-261
    • /
    • 1999
  • Many control techniques have been proposed in order to improve the control performance of discrete-time domain control system. In the position control system using a DC servo motor as control system, the response-characteristic of system is controlled by the I-PD controller. In the I-PD longer if gains of I-PD controller are unsuitable. In this paper, therefore, a expanded I-PD control system is constructed by inserting a pre-compensator at out terminal of I-PD controller. It is implemented by neural network with two hidden layers. From the result of computer simulation in the proposed control algorithm, its usefulness is verified.

  • PDF

A Fundamental Study on the Prediction of Carbonation Progress Using Deep Learning Algorithm Considering Mixing Factors (배합인자를 고려한 딥러닝 알고리즘 기반 탄산화 진행 예측에 관한 기초적 연구)

  • Jung, Do-Hyun;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.30-31
    • /
    • 2019
  • Carbonation of the root concrete reduces the durability of the reinforced concrete, and it is important to check the carbonation resistance of the concrete to ensure the durability of the reinforced concrete structure. In this study, a basic study on the prediction of carbonation progress was conducted by considering the mixing conditions of concrete using deep learning algorithm during the theory of artificial neural network theory. The data used in the experiment used values that converted the carbonation velocity coefficient obtained from the mixing conditions of concrete and the accelerated carbonation experiment into the actual environment. The analysis shows that the error rate of the deep learning model according to the Hidden Layer is the best for the model using five layers, and based on the five Hidden layers, we want to verify the predicted performance of the carbonation speed coefficient of the carbonation test specimen in which the exposure experiment took place in the real environment.

  • PDF

Application of artificial neural networks (ANNs) and linear regressions (LR) to predict the deflection of concrete deep beams

  • Mohammadhassani, Mohammad;Nezamabadi-pour, Hossein;Jumaat, Mohd Zamin;Jameel, Mohammed;Arumugam, Arul M.S.
    • Computers and Concrete
    • /
    • v.11 no.3
    • /
    • pp.237-252
    • /
    • 2013
  • This paper presents the application of artificial neural network (ANN) to predict deep beam deflection using experimental data from eight high-strength-self-compacting-concrete (HSSCC) deep beams. The optimized network architecture was ten input parameters, two hidden layers, and one output. The feed forward back propagation neural network of ten and four neurons in first and second hidden layers using TRAINLM training function predicted highly accurate and more precise load-deflection diagrams compared to classical linear regression (LR). The ANN's MSE values are 40 times smaller than the LR's. The test data R value from ANN is 0.9931; thus indicating a high confidence level.

A Mechanical Information Model of Line Heating Process using Artificial Neural Network (인공신경망을 이용한 선상가열 공정의 역학정보모델)

  • Park, Sung-Gun;Kim, Won-Don;Shin, Jong-Gye
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.1
    • /
    • pp.122-129
    • /
    • 1997
  • Thermo-elastic-plastic analyses used in solving plate forming process are often computationally expensive. To obtain an optimal process of line heating typically requires numerous iterations between the simulation and a finite element analysis. This process often becomes prohibitive due to the amount of computer time required for numerical simulation of line heating process. Therefore, a new techniques that could significantly reduce the computer time required to solve a complex analysis problem would be beneficial. In this paper, we considered factors that influence the bending effect by line heating and developed inference engine by using the concept of artificial neural network. To verify the validity of the neural network, we used results obtained from numerical analysis. We trained the neural network with the data made from numerical analysis and experiments varying the structure of neural network, in other words varying the number of hidden layers and the number of neurons in each hidden layers. From that we concluded that if the number of neurons in each hidden layers is large enough neural network having two hidden layers can be trained easily and errors between exact value and results obtained from trained network are not so large. Consequently, if there are enough number of training pairs, artificial neural network can infer similar results. Based on the numerical results, we applied the artificial neural network technique to deal with mechanical behavior of line heating at simulation stage effectively.

  • PDF

Nonlinear Compensation Using Artificial Neural Network in Radio-over-Fiber System

  • Najarro, Andres Caceres;Kim, Sung-Man
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2018
  • In radio-over-fiber (RoF) systems, nonlinear compensation is very important to meet the error vector magnitude (EVM) requirement of the mobile network standards. In this study, a nonlinear compensation technique based on an artificial neural network (ANN) is proposed for RoF systems. This technique is based on a backpropagation neural network (BPNN) with one hidden layer and three neuron units in this study. The BPNN obtains the inverse response of the system to compensate for nonlinearities. The EVM of the signal is measured by changing the number of neurons and the hidden layers in a RoF system modeled by a measured data. Based on our simulation results, it is concluded that one hidden layer and three neuron units are adequate for the RoF system. Our results showed that the EVMs were improved from 4.027% to 2.605% by using the proposed ANN compensator.

Real-Time Dynamic Simulation of Vehicle and Occupant Using a Neural Network (시뮬레이터에서 동역학 실시간 처리를 위한 신경망 적용)

  • Son, Kwon;Choi, Kyung-Hyun;Song, Nam-Yong;Lee, Dong-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.132-140
    • /
    • 2002
  • A momentum backpropagation neural network is prepared to carry out real-time dynamics simulations of a passenger car. A full-car model of fifteen degrees of freedom was constructed for vehicle dynamics analysis. Human body dynamics analysis was performed for a male driver(50 percentile Korean adult) restrained by a three point seatbelt system. The trained data using the neural network were obtained using a dynamic solver, ADAMS . The neural network were formed based on the dynamics of the simulator. The optimized hidden layer was obtained by selecting the optimal number of hidden layers. The driving scenario including bump passing and lane changing has been used for the estimation of the proposed neural network. A comparison between the trained data and neural network outputs is found to be satisfactory to show the applicability of the suggested approach.

Visibility Enhancement of the Ultrasonic Signal Reflected from Adhesive Layers (접착층에서 반사된 초음파 신호의 가시도 개선)

  • Shin, Jin Seob;Lee, Jeong-Ihll
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.6
    • /
    • pp.153-157
    • /
    • 2008
  • Recently, electronic devices is produced by multilayer structure, therefore analysis for hidden layers is important nondestructive inspection. This paper presents visibility enhancement methods for the ultrasonic multiple echoes reflected from adhesive layer in the multilayers using digital signal processing. The reflected signals from the multilayers come out interval of the peaks in the power cepstrum. In the experiment, the adhesive layers of settled thickness using epoxy were formed. The reflected signals from the multilayer is detected by pulse-echo method and power cepstrum is processed for enhancement of visibility.

  • PDF

A Multi-layer Bidirectional Associative Neural Network with Improved Robust Capability for Hardware Implementation (성능개선과 하드웨어구현을 위한 다층구조 양방향연상기억 신경회로망 모델)

  • 정동규;이수영
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.9
    • /
    • pp.159-165
    • /
    • 1994
  • In this paper, we propose a multi-layer associative neural network structure suitable for hardware implementaion with the function of performance refinement and improved robutst capability. Unlike other methods which reduce network complexity by putting restrictions on synaptic weithts, we are imposing a requirement of hidden layer neurons for the function. The proposed network has synaptic weights obtainted by Hebbian rule between adjacent layer's memory patterns such as Kosko's BAM. This network can be extended to arbitary multi-layer network trainable with Genetic algorithm for getting hidden layer memory patterns starting with initial random binary patterns. Learning is done to minimize newly defined network error. The newly defined error is composed of the errors at input, hidden, and output layers. After learning, we have bidirectional recall process for performance improvement of the network with one-shot recall. Experimental results carried out on pattern recognition problems demonstrate its performace according to the parameter which represets relative significance of the hidden layer error over the sum of input and output layer errors, show that the proposed model has much better performance than that of Kosko's bidirectional associative memory (BAM), and show the performance increment due to the bidirectionality in recall process.

  • PDF