• Title/Summary/Keyword: Hidden Neurons

Search Result 133, Processing Time 0.023 seconds

Underachievers Realm Decision Support System using Computational Intelligence (연산지능을 이용한 부진아 영역진단 지원 시스템)

  • Lim, Chang-Gyoon;Kim, Kang-Chul;Yoo, Jae-Hung;Jhung, Jung-Ha
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.30-36
    • /
    • 2006
  • In this paper, we proposed the system that supports underachievers realm decision of Korean language curriculum in the middle school. Learning disability and stagnation should be minimized by using and applying the proposed system. The input layer of the system contains 36 variables, which can be specific items in the Koran language curriculum. The variables are encoded with the specific coding schemes. The number of nodes in the hidden layer was determined through a series of learning stage with best result. We assigned 4 neurons, which correspond to one realm of the curriculum to output layer respectively. We used the multilayer perceptron and the error backpropagation algorithm to develope the system. A total of 2,008 data for training and 380 for testing were used for evaluating the performance.

Accelerated Monte Carlo analysis of flow-based system reliability through artificial neural network-based surrogate models

  • Yoon, Sungsik;Lee, Young-Joo;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.175-184
    • /
    • 2020
  • Conventional Monte Carlo simulation-based methods for seismic risk assessment of water networks often require excessive computational time costs due to the hydraulic analysis. In this study, an Artificial Neural Network-based surrogate model was proposed to efficiently evaluate the flow-based system reliability of water distribution networks. The surrogate model was constructed with appropriate training parameters through trial-and-error procedures. Furthermore, a deep neural network with hidden layers and neurons was composed for the high-dimensional network. For network training, the input of the neural network was defined as the damage states of the k-dimensional network facilities, and the output was defined as the network system performance. To generate training data, random sampling was performed between earthquake magnitudes of 5.0 and 7.5, and hydraulic analyses were conducted to evaluate network performance. For a hydraulic simulation, EPANET-based MATLAB code was developed, and a pressure-driven analysis approach was adopted to represent an unsteady-state network. To demonstrate the constructed surrogate model, the actual water distribution network of A-city, South Korea, was adopted, and the network map was reconstructed from the geographic information system data. The surrogate model was able to predict network performance within a 3% relative error at trained epicenters in drastically reduced time. In addition, the accuracy of the surrogate model was estimated to within 3% relative error (5% for network performance lower than 0.2) at different epicenters to verify the robustness of the epicenter location. Therefore, it is concluded that ANN-based surrogate model can be utilized as an alternative model for efficient seismic risk assessment to within 5% of relative error.

A self-organizing algorithm for multi-layer neural networks (다층 신경회로망을 위한 자기 구성 알고리즘)

  • 이종석;김재영;정승범;박철훈
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.3
    • /
    • pp.55-65
    • /
    • 2004
  • When a neural network is used to solve a given problem it is necessary to match the complexity of the network to that of the problem because the complexity of the network significantly affects its learning capability and generalization performance. Thus, it is desirable to have an algorithm that can find appropriate network structures in a self-organizing way. This paper proposes algorithms which automatically organize feed forward multi-layer neural networks with sigmoid hidden neurons for given problems. Using both constructive procedures and pruning procedures, the proposed algorithms try to find the near optimal network, which is compact and shows good generalization performance. The performances of the proposed algorithms are tested on four function regression problems. The results demonstrate that our algorithms successfully generate near-optimal networks in comparison with the previous method and the neural networks of fixed topology.

Analyses of Steady State Mixing Process of Two-Liquids Using Artificial Intelligence (인공지능을 이용한 이종액체 정상 상태 혼합의 혼합과정 해석)

  • KONG, DAEKYEONG;YUM, JUHO;CHO, GYEONGRAE;DOH, DEOGHEE
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.5
    • /
    • pp.523-529
    • /
    • 2018
  • Two liquids which are generally used as fuels of rockets are mixed and their mixing process is quantitatively investigated by the use of particle image velocimetry (PIV). As working fluids for the liquid mixing, Dimethylfuran (DMF) and JetA1 oils have been used. Since the specific gravity of DMF is larger than that of JetA1 oil, the DMF oil has been set at the lower part of the JetA1 oil. For better visualization of the mixing process, Rhodamin B powder has been blended into the DMF oil. An agitator having 3 blades has been used for mixing the two liquids. For quantitative visualization, a LCD monitor has been used as a light source. A color camera, camcoder, has been used for recording the mixing process. The images captured by the camcoder have been digitized into three color components, R, G, and B. The color intensities of R, G, and B have been used as the inputs of the neural network of which hidden layer has 20 neurons. Color-to-concentration calibration has been performed before commencing the main experiments. Once this calibration is completed, the temporal changes of the concentration of the DMF has been quantitatively analyzed by using the constructed measurement system.

The use of artificial neural networks in predicting ASR of concrete containing nano-silica

  • Tabatabaei, Ramin;Sanjaria, Hamid Reza;Shamsadini, Mohsen
    • Computers and Concrete
    • /
    • v.13 no.6
    • /
    • pp.739-748
    • /
    • 2014
  • In this article, by using experimental studies and artificial neural network has been tried to investigate the use of nano-silica as concrete admixture to reduce alkali-silica reaction. If there are reactive aggregates and alkali of cement with enough moisture in concrete, a gel will be formed. Then with high reactivity between alkali of cement and existence of silica in aggregates, this gel will expand by absorption of water, and causes expansive pressure and cracks be formed. At the time passes, this gel will reduce both durability and strength of the concrete. By reducing the size of silicate to nano, specific surface area of particles and number of atoms on the surface will be increased, which causes more pozzolanic activity of them. Nano-silica can react with calcium hydroxide ($Ca(OH)_2$) and produces C-S-H gel. In this study, accelerated mortar bar specimens according to ASTM C 1260 and ASTM C 1567, with different mix proportions were prepared using aggregates of Kerman, such as: none admixture and plasticizer, different proportions of nano-silica separately. By opening the moulds after 24 hour and curing in water at $80^{\circ}C$ for 24 hour, then curing in (1N NaOH) at $80^{\circ}C$ for 14 days, length expansion of mortar bars were measured and compared. It was noted that, the lowest length expansion of a specimens shows the best proportion of admixture based on alkali-silica reactivity. Then, prediction of alkali-silica reaction of concrete has been investigated by using artificial neural network. In this study the backpropagation network has been used and compared with different algorithms to train network. Finally, the best amount of nano silica for adding to mix proportion, also the best algorithm and number of neurons in hidden layer of artificial neural network have been offered.

A Study on Characteristics of Neural Network Model for Reservoir Inflow Forecasting (저수지 유입량 예측을 위한 신경망 모형의 특성 연구)

  • Kim, Jae-Hvung;Yoon, Yong-Nam
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.4 s.7
    • /
    • pp.123-129
    • /
    • 2002
  • In this study the results of Chungju reservoir inflow forecasting using 3 layered neural network model were analyzed in order to investigate the characteristics of neural network model for reservoir inflow forecasting. The proper neuron numbers of input and hidden layer were proposed after examining the variations of forecasted values according to neuron number and training epoch changes, and the probability of underestimation was judged by deliberating the variation characteristics of forecasting according to the differences between training and forecasting peak inflow magnitudes. In addition, necessary minimum training data size for precise forecasting was proposed. As a result, We confirmed the probability that excessive neuron number and training epoch cause over-fitting and judged that applying $8{\sim}10$ neurons, $1500{\sim}3000$ training epochs might be suitable in the case of Chungju reservoir inflow forecasting. When the peak inflow of training data set was larger than the forecasted one, it was confirmed that the forecasted values could be underestimated. And when the comparative short period training data was applied to neural networks, relatively inaccurate forecasting outputs were resulted and applying more than 600 training data was recommended for more precise forecasting in Chungju reservoir.

Optimised neural network prediction of interface bond strength for GFRP tendon reinforced cemented soil

  • Zhang, Genbao;Chen, Changfu;Zhang, Yuhao;Zhao, Hongchao;Wang, Yufei;Wang, Xiangyu
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.599-611
    • /
    • 2022
  • Tendon reinforced cemented soil is applied extensively in foundation stabilisation and improvement, especially in areas with soft clay. To solve the deterioration problem led by steel corrosion, the glass fiber-reinforced polymer (GFRP) tendon is introduced to substitute the traditional steel tendon. The interface bond strength between the cemented soil matrix and GFRP tendon demonstrates the outstanding mechanical property of this composite. However, the lack of research between the influence factors and bond strength hinders the application. To evaluate these factors, back propagation neural network (BPNN) is applied to predict the relationship between them and bond strength. Since adjusting BPNN parameters is time-consuming and laborious, the particle swarm optimisation (PSO) algorithm is proposed. This study evaluated the influence of water content, cement content, curing time, and slip distance on the bond performance of GFRP tendon-reinforced cemented soils (GTRCS). The results showed that the ultimate and residual bond strengths were both in positive proportion to cement content and negative to water content. The sample cured for 28 days with 30% water content and 50% cement content had the largest ultimate strength (3879.40 kPa). The PSO-BPNN model was tuned with 3 neurons in the input layer, 10 in the hidden layer, and 1 in the output layer. It showed outstanding performance on a large database comprising 405 testing results. Its higher correlation coefficient (0.908) and lower root-mean-square error (239.11 kPa) were obtained compared to multiple linear regression (MLR) and logistic regression (LR). In addition, a sensitivity analysis was applied to acquire the ranking of the input variables. The results illustrated that the cement content performed the strongest influence on bond strength, followed by the water content and slip displacement.

Spatial Estimation of soil roughness and moisture from Sentinel-1 backscatter over Yanco sites: Artificial Neural Network, and Fractal

  • Lee, Ju Hyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.125-125
    • /
    • 2020
  • European Space Agency's Sentinel-1 has an improved spatial and temporal resolution, as compared to previous satellite data such as Envisat Advanced SAR (ASAR) or Advanced Scatterometer (ASCAT). Thus, the assumption used for low-resolution retrieval algorithms used by ENVISAT ASAR or ASCAT is not applicable to Sentinel-1, because a higher degree of land surface heterogeneity should be considered for retrieval. The assumption of homogeneity over land surface is not valid any more. In this study, considering that soil roughness is one of the key parameters sensitive to soil moisture retrievals, various approaches are discussed. First, soil roughness is spatially inverted from Sentinel-1 backscattering over Yanco sites in Australia. Based upon this, Artificial Neural Networks data (feedforward multiplayer perception, MLP, Levenberg-Marquadt algorithm) are compared with Fractal approach (brownian fractal, Hurst exponent of 0.5). When using ANNs, training data are achieved from theoretical forward scattering models, Integral Equation Model (IEM). and Sentinel-1 measurements. The network is trained by 20 neurons and one hidden layer, and one input layer. On the other hand, fractal surface roughness is generated by fitting 1D power spectrum model with roughness spectra. Fractal roughness profile is produced by a stochastic process describing probability between two points, and Hurst exponent, as well as rms heights (a standard deviation of surface height). Main interest of this study is to estimate a spatial variability of roughness without the need of local measurements. This non-local approach is significant, because we operationally have to be independent from local stations, due to its few spatial coverage at the global level. More fundamentally, SAR roughness is much different from local measurements, Remote sensing data are influenced by incidence angle, large scale topography, or a mixing regime of sensors, although probe deployed in the field indicate point data. Finally, demerit and merit of these approaches will be discussed.

  • PDF

The development of four efficient optimal neural network methods in forecasting shallow foundation's bearing capacity

  • Hossein Moayedi;Binh Nguyen Le
    • Computers and Concrete
    • /
    • v.34 no.2
    • /
    • pp.151-168
    • /
    • 2024
  • This research aimed to appraise the effectiveness of four optimization approaches - cuckoo optimization algorithm (COA), multi-verse optimization (MVO), particle swarm optimization (PSO), and teaching-learning-based optimization (TLBO) - that were enhanced with an artificial neural network (ANN) in predicting the bearing capacity of shallow foundations located on cohesionless soils. The study utilized a database of 97 laboratory experiments, with 68 experiments for training data sets and 29 for testing data sets. The ANN algorithms were optimized by adjusting various variables, such as population size and number of neurons in each hidden layer, through trial-and-error techniques. Input parameters used for analysis included width, depth, geometry, unit weight, and angle of shearing resistance. After performing sensitivity analysis, it was determined that the optimized architecture for the ANN structure was 5×5×1. The study found that all four models demonstrated exceptional prediction performance: COA-MLP, MVO-MLP, PSO-MLP, and TLBO-MLP. It is worth noting that the MVO-MLP model exhibited superior accuracy in generating network outputs for predicting measured values compared to the other models. The training data sets showed R2 and RMSE values of (0.07184 and 0.9819), (0.04536 and 0.9928), (0.09194 and 0.9702), and (0.04714 and 0.9923) for COA-MLP, MVO-MLP, PSO-MLP, and TLBO-MLP methods respectively. Similarly, the testing data sets produced R2 and RMSE values of (0.08126 and 0.07218), (0.07218 and 0.9814), (0.10827 and 0.95764), and (0.09886 and 0.96481) for COA-MLP, MVO-MLP, PSO-MLP, and TLBO-MLP methods respectively.

The Analysis of Liquefaction Evaluation in Ground Using Artificial Neural Network (인공신경망을 이용한 지반의 액상화 가능성 판별)

  • Lee, Song;Park, Hyung-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.37-42
    • /
    • 2002
  • Artificial neural networks are efficient computing techniques that are widely used to solve complex problems in many fields. In this paper a liquefaction potential was estimated by using a back propagation neural network model applicated to cyclic triaxial test data, soil parameters and site investigation data. Training and testing of the network were based on a database of 43 cyclic triaxial test data from 00 sites. The neural networks are trained by modifying the weights of the neurons in response to the errors between the actual output values and the target output value. Training was done iteratively until the average sum squared errors over all the training patterns were minimized. This generally occurred after about 15,000 cycles of training. The accuracy from 72% to 98% was shown for the model equipped with two hidden layers and ten input variables. Important effective input variables have been identified as the NOC,$D_10$ and (N$_1$)$_60$. The study showed that the neural network model predicted a CSR(Cyclic shear stress Ratio) of silty-sand reasonably well. Analyzed results indicate that the neural-network model is more reliable than simplified method using N value of SPT.