Proceedings of the Korea Inteligent Information System Society Conference
/
2001.01a
/
pp.30-33
/
2001
The number of hidden neurons of the feed-forward neural networks is generally decided on the basis of experience. The method usually results in the lack or redundancy of hidden neurons, and causes the shortage of capacity for storing information of learning overmuch. This research proposes a new method for optimizing the number of hidden neurons bases on information entropy, Firstly, an initial neural network with enough hidden neurons should be trained by a set of training samples. Second, the activation values of hidden neurons should be calculated by inputting the training samples that can be identified correctly by the trained neural network. Third, all kinds of partitions should be tried and its information gain should be calculated, and then a decision-tree correctly dividing the whole sample space can be constructed. Finally, the important and related hidden neurons that are included in the tree can be found by searching the whole tree, and other redundant hidden neurons can be deleted. Thus, the number of hidden neurons can be decided. In the case of building a neural network with the best number of hidden units for tea quality evaluation, the proposed method is applied. And the result shows that the method is effective
This paper proposes new criteria to fix hidden neuron in Multilayer Perceptron Networks for wind speed prediction in renewable energy systems. To fix hidden neurons, 101 various criteria are examined based on the estimated mean squared error. The results show that proposed approach performs better in terms of testing mean squared errors. The convergence analysis is performed for the various proposed criteria. Mean squared error is used as an indicator for fixing neuron in hidden layer. The proposed criteria find solution to fix hidden neuron in neural networks. This approach is effective, accurate with minimal error than other approaches. The significance of increasing the number of hidden neurons in multilayer perceptron network is also analyzed using these criteria. To verify the effectiveness of the proposed method, simulations were conducted on real time wind data. Simulations infer that with minimum mean squared error the proposed approach can be used for wind speed prediction in renewable energy systems.
For elucidating the key role of hidden neurons in information processing of Multilayer perceptrons(MLPs), we prove that the correlation coefficient between weighted sums to hidden neurons decreases under element-wise nonlinear transformations. This is verified through training of MLPs for an isolated word recognition problem. From this result, we can say that the element-wise nonlinear functions reduces redundancy in the information contents of hidden neurons.
Fly ash and silica fume belong to industry by-products that can be used to produce concrete. This study shows the model of a neural network to evaluate the strength development of blended concrete containing fly ash and silica fume. The neural network model has four input parameters, such as fly ash replacement content, silica fume replacement content, water/binder ratio, and ages. Strength is the output variable of neural network. Based on the backpropagation algorithm, the values of elements in the hidden layer of neural network are determined. The number of neurons in the hidden layer is confirmed based on trial calculations. We find (1) neural network can give a reasonable evaluation of the strength development of composite concrete. Neural network can reflect the improvement of strength due to silica fume additions and can consider the reductions of strength as water/binder increases. (2) When the number of neurons in the hidden layer is five, the prediction results show more accuracy than four neurons in the hidden layer. Moreover, five neurons in the hidden layer can reproduce the strength crossover between fly ash concrete and plain concrete. Summarily, the neural network-based model is valuable for design sustainable composite concrete containing silica fume and fly ash.
The infrastructure system in the United States has been aging faster than the resource available to restore them. Therefore decision for allocating the resources is based in part on the condition of the structural system. This paper proposes to use neural network to predict the overall rating of the structural system because of the successful applications of neural network to other fields which require a "symptom-diagnostic" type relationship. The goal of this paper is to illustrate the potential of using neural network in civil engineering applications and, particularly, in bridge evaluations. Data collected by the Tennessee Department of Transportation were used as "test bed" for the study. Multi-layer feed forward networks were developed using the Levenberg-Marquardt training algorithm. All the neural networks consisted of at least one hidden layer of neurons. Hyperbolic tangent transfer functions were used in the first hidden layer and log-sigmoid transfer functions were used in the subsequent hidden and output layers. The best performing neural network consisted of three hidden layers. This network contained three neurons in the first hidden layer, two neurons in the second hidden layer and one neuron in the third hidden layer. The neural network performed well based on a target error of 10%. The results of this study indicate that the potential for using neural networks for the evaluation of infrastructure systems is very good.
Cho Hyun Cheol;Fadali M. Sami;Saiidi M. Saiid;Lee Kwon Soon
International Journal of Control, Automation, and Systems
/
v.3
no.2
/
pp.202-210
/
2005
This paper presents a new neural network control for nonlinear bridge systems with earthquake excitation. We design multi-layer neural network controllers with a single hidden layer. The selection of an optimal number of neurons in the hidden layer is an important design step for control performance. To select an optimal number of hidden neurons, we progressively add one hidden neuron and observe the change in a performance measure given by the weighted sum of the system error and the control force. The number of hidden neurons which minimizes the performance measure is selected for implementation. A neural network was trained for mitigating vibrations of bridge systems caused by El Centro earthquake. We applied the proposed control approach to a single-degree-of-freedom (SDOF) and a two-degree-of-freedom (TDOF) bridge system. We assessed the robustness of the control system using randomly generated earthquake excitations which were not used in training the neural network. Our results show that the neural network controller drastically mitigates the effect of the disturbance.
Recurrent-Cascade-Correlation(RCC) is a supervised teaming algorithm that automatically determines the size and topology of the network. RCC adds new hidden neurons one by one and creates a multi-layer structure in which each hidden layer has only one neuron. By second order RCC, new hidden neurons are added to only one hidden layer. These created neurons are not connected to each other. We present a generalization of the RCC Architecture by combining the standard RCC Architecture and the second order RCC Architecture. Whenever a hidden neuron has to be added, the new RCC teaming algorithm automatically determines whether the network topology grows vertically or horizontally. This new algorithm using sigmoid, tanh and new activation functions was tested with the morse-benchmark-problem. Therefore we recognized that the number of hidden neurons was decreased by the experiments of the RCC network generalization which used the activation functions.
Journal of the Korean Society for Precision Engineering
/
v.28
no.7
/
pp.814-820
/
2011
It takes long time in numerical simulation because structural design for tire requires the nonlinear material property. Neural networks has been widely studied to engineering design to reduce numerical computation time. The numbers of hidden layer, hidden layer neuron and training data have been considered as the structural design variables of neural networks. In application of neural networks to optimize design, there are a few studies about arrangement method of input layer neurons. To investigate the effect of input layer neuron arrangement on neural networks, the variables of tire contour design and tension in bead area were assigned to inputs and output for neural networks respectively. Design variables arrangement in input layer were determined by main effect analysis. The number of hidden layer, the number of hidden layer neuron and the number of training data and so on have been considered as the structural design variables of neural networks. In application to optimization design problem of neural networks, there are few studies about arrangement method of input layer neurons. To investigate the effect of arrangement of input neurons on neural network learning tire contour design parameters and tension in bead area were assigned to neural input and output respectively. Design variables arrangement in input layer was determined by main effect analysis.
Journal of the Korean Institute of Telematics and Electronics B
/
v.31B
no.8
/
pp.211-218
/
1994
In this paper we develope a hybrid learning rule to improve the robustness of multi-layer Perceptions. In most neural networks the activation of a neuron is deternined by a nonlinear transformation of the weighted sum of inputs to the neurons. Investigating the behaviour of activations of hidden layer neurons a new learning algorithm is developed for improved robustness for multi-layer Perceptrons. Unlike other methods which reduce the network complexity by putting restrictions on synaptic weights our method based on error-backpropagation increases the complexity of the underlying proplem by imposing it saturation requirement on hidden layer neurons. We also found that the additional gradient-descent term for the requirement corresponds to the Hebbian rule and our algorithm incorporates the Hebbian learning rule into the error back-propagation rule. Computer simulation demonstrates fast learning convergence as well as improved robustness for classification and hetero-association of patterns.
Journal of Korean Institute of Industrial Engineers
/
v.24
no.1
/
pp.23-35
/
1998
This article presents a network flow analysis to form flexible machine cells with minimum intercellular part moves and a neural network model to form part families. The operational sequences and production quantity of the part, and the number of cells and the cell size are taken into considerations for a 0-1 quadratic programming formulation and a network flow based solution procedure is developed. After designing the machine cells, a neural network approach for the integration of part families and the automatic assignment of new parts to the existing cells is proposed. A multi-layer backpropagation network with one hidden layer is used. Experimental results with varying number of neurons in hidden layer to evaluate the role of hidden neurons in the network learning performance are also presented. The comprehensive methodology developed in this article is appropriate for solving large-scale industrial applications without building the knowledge-based expert rule for the cellular manufacturing environment.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.