군사적, 산업적 용도로 널리 활용되고 있는 적외선 검출기는 InSb, HgCdTe(MCT)와 같은 물질들을 감지 소자로 사용하고 있다. 현재 가장 많이 사용되는 MCT는 적외선의 전 영역을 감지할 수 있는 장점이 있지만, 대면적 제작이 어려운 단점이 있다. 이에 비해 InSb는 안정적인 재료의 특성, 높은 전하이동도($1.2\times10^6\;cm^2/Vs$) 그리고 대면적 소자 제작의 가능성 등이 높게 평가되어 차세대 적외선 검출소자로 각광 받고 있다. InSb 적외선 수광 소자는 1970년대부터 미국을 중심으로 이온주입, MOCVD 또는 MBE와 같은 다양한 공정을 이용하여 제작되어 왔으며, 앞으로도 군수용 제품을 비롯하여 산업전반에서 더욱 각광을 받을 것으로 예상된다. 하지만 InSb는 77 K에서 0.225 eV의 상대적으로 작은 밴드갭을 갖고 있기 때문에 누설전류로 인한 성능저하가 고질적인 문제로 대두되었고, 이를 해결하기 위한 고품질 절연막 연구가 InSb 적외선 수광 소자 연구의 주요 이슈 중 하나가 되어왔다. PECVD, photo-CVD, anodic oxidation 등의 공정을 이용하여 $SiO_2$, $Si_3N_4$, 양극산화막(anodic oxide) 등 다양한 물질들에 대한 연구가 진행되었고[1,2], 산화막과 반도체 계면에서의 열확산을 억제하여 계면트랩밀도를 최소화하기 위한 연구도 활발히 이루어졌다[3]. 하지만 InSb 소자의 성능개선을 위한 최적화된 산화막에 대한 연구는 여전히 불충분한 실정이다. 본 연구에서는 n형 (100) InSb 기판 (n = 0.2 ~ $0.85\times10^{15}cm^{-3}$ @ 77 K)을 이용하여 양극산화막, $SiO_2$, $Si_3N_4$ 등을 증착하고 절연막으로서 이들의 특성을 비교 분석하였다. 양극산화막은 상온에서 1 N KOH 용액을 이용하여 양극산화법으로 증착하였으며, $SiO_2$, $Si_3N_4$는 PECVD로 $150^{\circ}C$에서 $300^{\circ}C$까지 온도를 변화시켜가며 증착하였다. SEM분석과 XPS분석으로 두께의 균일도와 절연막의 조성, 계면확산 정도를 확인하였으며, I-V와 C-V 커브측정을 통해 각 절연막의 전기적 특성을 평가하였다. 이 분석들을 통해 각각의 공정 조건에 따른 절연막의 상태를 전기적 특성과 관련지어 설명할 수 있었다.
The ternary semiconducting compounds of the $A_{4}BX_{6}$(A=Cd, Zn, Hg; B=Si, Sn, Ge; X=S, Se, Te) type exhibit strong fluorescence and high photosensitivity in the visible and near infrared ranges, so these are supposed to be materials applicable to photoelectrical devices. These materials were synthesized and single crystals were first grown by Nitsche, who identified the crystal structure of the single crystals. In this paper. author describe the undoped and $Co^{2+}$-doped $Zn_{4}SnSe_{6}$ single crystals were grown by the chemical transport reaction(CTR) method using iodine of $6mg/cm^{3}$ as a transport agent. For the crystal. growth, the temperature gradient of the CTR furnace was kep at $700^{\circ}C$ for the source aone and at $820^{\circ}C$ for the growth zone for 7-days. It was found from the analysis of x-ray diffraction that undoped and $Co^{2+}$-doped $Zn_{4}SnSe_{6}$ compounds have a monoclinic structure. The optical absorption spectra obtained near the fundamental absorption edge showed that these compounds have a direct energy gaps. These temperature dependence of the optical energy gap were closely investigated over the temperature range 10[K]~300[K]
적외선 검출소자(Infrared Photodetector)는 근적외선에서 원적외선 영역에 이르는 광범위한 파장 범위의 적외선을 이용하는 기기로서 대상물이 방사하는 적외선 영역의 에너지를 흡수하여 이를 영상화할 수 있는 장비이다. 적외선 관련 기술은 2차 세계대전 기간에 태동하였으며, 현재에는 원거리 감지기술 등과 접목되면서 그 활용 분야가 다양해지고 있다. 특히 능동형 정밀 타격무기를 비롯한 감시 정찰 장비 및 지능형 전투 장비 시스템 등에 대한 요구를 바탕으로 보다 정밀하고 신속한 표적 감지 및 정보처리 기술에 관한 연구가 선진국을 통해서 활발히 진행되고 있다. 기존의 Bolometer 형식의 열 감지 소자는 반응 속도가 느리고 측정 감도가 낮은 단점이 있으며, MCT(HgCdTe)를 이용한 적외선 검출기의 경우 높은 기계적 결함과 77K 저온에서 동작해야하기 때문에 발생하는 추가 비용 등이 문제점으로 지적되고 있다[1]. 이에 반해 화합물 반도체 자기조립 양자점(self-assembled quantum dot)을 이용한 적외선 수광소자는 양자점이 가지는 불연속적인 내부 에너지 준위로 인하여, 높은 내부 양자 효율과 온도 안정성을 기대할 수 있으며, 고성능, 고속처리, 저소비전력 및 저소음의 실현이 가능하다. 본 연구에서는 적층 InAs/InGaAs dot-in-a-well 구조를 유기금속화학기상증착법을 이용하여 성장하고 이를 소자에 응용하였다. 균일한 적층 양자점의 성장을 위해서 원자현미경(atomic force microscopy)을 이용하여, 각 층의 양자점의 크기와 밀도를 관찰하였고, photoluminescence (PL)를 이용하여 발광특성을 연구하였다. 각 층간의 GaAs space layer의 두께와 온도 조절 과정을 조절함으로써 균일한 적층 양자점 구조를 얻을 수 있었다. 이를 이용하여 양자점의 전도대 내부의 에너지 준위간 천이(intersubband transition)를 이용하는 n-type GaAs/intrinsic InAs 양자점/n-type GaAs 구조의 양자점 적외선수광소자 구조를 성장하였다. 이 과정에서 상부 n-type GaAs의 성장 온도가 600도 이상이 되는 경우 발광효율이 급격히 감소하고, 암전류가 크게 증가하는 것을 관찰하였다. 이는 InAs 양자점과 주변 GaAs 간의 열에 의한 상호 확산에 의하여 양자점의 전자 구속 효과를 저해하는 것으로 설명된다.
안티모니 (Sb)를 기반으로 한 제2형 초격자 (Type II superlattice, T2SL)구조 적외선 검출기 연구는 2000년대 들어 Sb 계열의 화합물 반도체 성장 기술이 발전함에 따라 HgCdTe (MCT), InSb, 양자우물 적외선 검출기 (QWIP)를 대체할 수 있는 고성능의 양자형 적외선 검출 소재로 부상하였으며, 현재 전 세계적으로 활발한 연구가 진행되고 있다. 특히, 기존의 양자형 적외선 검출소자에 비해 전자의 유효질량이 상대적으로 커서 밴드 간의 투과전류가 줄어들 뿐만 아니라, 전자와 정공이 서로 다른 물질 영역에 분포하여 Auger 재결합률을 효과적으로 줄일 수 있어 상온 동작이 가능한 소재로 주목을 받고 있다. 또한, T2SL 구조는 초격자를 구성하는 물질의 두께나 조성 변화를 통한 밴드갭 변조가 용이하여 단파장에서 장파장 적외선에 이르는 광범위한 파장 대역에서 동작이 가능할 뿐만 아니라 구조적 변화를 통해 이중 대역을 동시에 검출 할 수 있는 차세대 적외선 열영상 소자로 알려져 있다. 본 연구에서는 분자선 에피택시(MBE)법을 이용하여 300 주기의 InAs/GaSb (10/10 ML) 제2형 초격자 구조를 성장하여 적외선 검출소자를 제작하였다. 제2형 초격자 구조를 구성하는 물질계에 p-type dopant인 Be을 이용하여 각각 도핑 농도가 다른 시료를 성장하였다. 이때 p-type 도핑 농도는 각각 $1/5/10{\times}10^{15}cm^{-3}$로 변화를 주었다. 성장된 시료의 구조적 특성 분석을 위해 고분해능 X선 회절 (High resolution X-ray diffraction, HRXRD)법을 이용하였으며, 초격자 한 주기의 두께가 6.2~6.4 nm 로 설계된 구조와 동일하게 성장됨을 확인 하였으며, 1차 위성피크의 반치폭은 30~80 arcsec로 우수한 결정성을 가짐을 확인하였다. 적외선 검출을 위한 $410{\times}410{\mu}m^2$ 크기의 단위 소자 공정을 진행하였으며 이때 적외선의 전면 입사를 위해 소자 위에 $300{\mu}m$의 윈도우 창을 제작하였다. 단위 소자의 측벽에는 표면 누설 전류가 흐르는데 이를 방지하기 위해서 표면보호막을 증착하였다. 적외선 검출 소자의 전기적 특성 평가를 위해 각각의 시료의 암전류 (dark current)와 파장별 반응 (spectral response)을 온도별로 측정하여 비교 및 분석하였다.
The NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1 is being developed by KASI. The NISS will perform the imaging low-resolution spectroscopic observation in the near-infrared range for nearby galaxies, low background regions, starforming regions and so on. The off-axis reflecting telescope with a wide field of view (2 deg. ${\times}$ 2 deg.) will be operated in the wavelength range from 0.95 to $3.8{\mu}m$. In order to reduce thermal noise, a telescope and a HgCdTe infrared sensor will be cooled down to 200K and 80K, respectively. To evade a stray light outside a field of view and use limited space efficiently, the NISS adopted the off-axis reflective optical system. The primary and secondary mirrors, optomechanical part and mechanical structure were designed to use the same material. It will lessen the degradation of optical performance due to a thermal variation. The purpose of NISS is the observation of cosmic near-infrared background in the wide wavelength range as well as the detection of near-infrared spectral lines in nearby galaxies, cluster of galaxies and star forming regions. It will give us less biased information on the star formation history. In addition, we will demonstrate the space technologies related to the development of the Korea's leading near-infrared instrument for the future large infrared telescope, SPICA.
중적외선 영역 ($3{\sim}5\;{\mu}m$)은 공기 중에 존재하는 이산화탄소나 수증기에 의해 흡수가 일어나지 않기 때문에 군사적으로 중요한 파장 영역이며, 야간에 적을 탐지하는데 응용되고 있다. InSb는 77 K에서 중적외선 파장 흡수에 적합한 밴드갭 에너지 (0.228 eV)를 갖고 있으며, 다른 화합물 반도체와 달리 전하 수송자 이동도 (전자: $10^6\;cm^2/Vs$, 정공: $10^4\;cm^2/Vs$)가 매우 빠르기 때문에 적외선 화상 감지기 재료로 매우 적합하다. 또한 현재 중적외선 영역대에서 널리 사용되는 HgCdTe (MCT)와 대등한 소자 성능을 나타냄과 동시에 낮은 기판 가격, 소자의 제작 용이성 때문에 MCT를 대체할 물질로 주목 받고 있다. 하지만, 기판과 절연막의 계면에 존재하는 결함 때문에 에너지 밴드갭 내에 에너지 준위를 형성하여 높은 누설 전류 특성을 보인다. 따라서 InSb 적외선 소자의 구현을 위하여 고품질의 절연막의 연구가 필수적이라고 할 수 있겠다. 절연막의 특성을 알아보기 위해, n형 InSb 기판에 플라즈마 화학 기상 증착법 (PECVD)을 이용하여 $SiO_2$, $Si_3N_4$를 증착하였으며, 증착 온도를 $120^{\circ}C$에서 $240^{\circ}C$까지 $40^{\circ}C$ 간격으로 변화하여 증착온도가 미치는 영향에 대하여 알아보았다. 절연막과 기판의 계면 특성을 분석하기 위하여 77 K에서 커패시턴스-전압 (C-V) 분석을 하였으며, 계면 트랩 밀도는 Terman method를 이용하여 계산하였다 [1]. $Si_3N_4$를 증착하였을 경우, $120{\sim}240^{\circ}C$의 증착 온도에서 $2.4{\sim}4.9{\times}10^{12}\;cm^{-2}eV^{-1}$의 계면 트랩 밀도를 가졌으며, 증착 온도가 증가할수록 계면 트랩 밀도가 증가하는 경향을 보였다. 또한 모든 증착 온도에서 flat band voltage가 음의 전압으로 이동하였다. $SiO_2$의 경우 $120{\sim}200^{\circ}C$의 증착온도에서 $7.1{\sim}7.3{\times}10^{11}\;cm^{-2}eV^{-1}$의 계면 트랩 밀도 값을 보였으나, $240^{\circ}C$ 이상에서 계면 트랩밀도가 $12{\times}10^{11}\;cm^{-2}eV^{-1}$로 크게 증가하였다. $SiO_2$ 절연막을 사용함으로써, $Si_3N_4$ 대비 약 25% 정도 낮은 계면 트랩 밀도를 얻을 수 있었으며, 모든 증착 온도에서 양의 전압으로 flat band voltage가 이동하였다. 두 절연막에 대한 계면 트랩의 원인을 분석하기 위하여 XPS 측정을 진행하였으며, 깊이에 따른 조성 분석을 하였다. 본 실험에서 최적화된 $SiO_2$ 절연막을 이용하여 InSb 소자의 pn 접합 연구를 진행하였다. Be+ 이온 주입을 진행하고, 급속열처리(RTA) 공정을 통하여 p층을 형성하였다. -0.1 V에서 16 nA의 누설 전류 값을 보였으며, $2.6{\times}10^3\;{\Omega}\;cm^2$의 RoA (zero bias resistance area)를 얻을 수 있었다.
Quantum wells infrared photodetectors (QWIPs) have been used to detect infrared radiations through the principle based on the localized stated in quantum wells (QWs) [1]. The mature III-V compound semiconductor technology used to fabricate these devices results in much lower costs, larger array sizes, higher pixel operability, and better uniformity than those achievable with competing technologies such as HgCdTe. Especially, GaAs/AlGaAs QWIPs have been extensively used for large focal plane arrays (FPAs) of infrared imaging system. However, the research efforts for increasing sensitivity and operating temperature of the QWIPs still have pursued. The modification of heterostructures [2] and the various fabrications for preventing polarization selection rule [3] were suggested. In order to enhance optical performances of the QWIPs, double barrier quantum well (DBQW) structures will be introduced as the absorption layers for the suggested QWIPs. The DBWQ structure is an adequate solution for photodetectors working in the mid-wavelength infrared (MWIR) region and broadens the responsivity spectrum [4]. In this study, InGaAs/GaAs/AlGaAs double barrier quantum well infrared photodetectors (DB-QWIPs) are successfully fabricated and characterized. The heterostructures of the InGaAs/GaAs/AlGaAs DB-QWIPs are grown by molecular beam epitaxy (MBE) system. Photoluminescence (PL) spectroscopy is used to examine the heterostructures of the InGaAs/GaAs/AlGaAs DB-QWIP. The mesa-type DB-QWIPs (Area : $2mm{\times}2mm$) are fabricated by conventional optical lithography and wet etching process and Ni/Ge/Au ohmic contacts were evaporated onto the top and bottom layers. The dark current are measured at different temperatures and the temperature and applied bias dependence of the intersubband photocurrents are studied by using Fourier transform infrared spectrometer (FTIR) system equipped with cryostat. The photovoltaic behavior of the DB-QWIPs can be observed up to 120 K due to the generated built-in electric field caused from the asymmetric heterostructures of the DB-QWIPs. The fabricated DB-QWIPs exhibit spectral photoresponses at wavelengths range from 3 to $7{\mu}m$. Grating structure formed on the window surface of the DB-QWIP will induce the enhancement of optical responses.
MIRIS is the main payload of the STSAT-3 (Science and Technology Satellite 3) and the first infrared space telescope for astronomical observation in Korea. MIRIS space observation camera (SOC) covers the observation wavelength from $0.9{\mu}m$ to $2.0{\mu}m$ with a wide field of view $3.67^{\circ}\times3.67^{\circ}$. The PICNIC HgCdTe detector in a cold box is cooled down below 100K by a micro Stirling cooler of which cooling capacity is 220mW at 77K. MIRIS SOC adopts passive cooling technique to chill the telescope below 200 K by pointing to the deep space (3K). The cooling mechanism employs a radiator, a Winston cone baffle, a thermal shield, MLI (Multi Layer Insulation) of 30 layers, and GFRP (Glass Fiber Reinforced Plastic) pipe support in the system. Optomechanical analysis was made in order to estimate and compensate possible stresses from the thermal contraction of mounting parts at cryogenic temperatures. Finite Element Analysis (FEA) of mechanical structure was also conducted to ensure safety and stability in launching environments and in orbit. MIRIS SOC will mainly perform Galactic plane survey with narrow band filters (Pa $\alpha$ and Pa $\alpha$ continuum) and CIB (Cosmic Infrared Background) observation with wide band filters (I and H) driven by a cryogenic stepping motor.
InAsSb alloy system 은 HgCdTe 를 대체하는 적외선 광소자 및 검출기 등에 응용이 가능한 유망한 물질이지만 정확한 유전함수 및 전이점의 연구는 미흡한 실정이다. 본 연구에서는 타원 편광 분석법을 이용하여 1.5 ~ 6 eV 의 분광 영역에서 As 조성비를 각기 (x = 0, 0.127, 0.337, 0.491, 0.726 및 1.00) 다르게 한 $InAs_xSb_{1-x}$ alloy의 유전함수를 측정하였다. 또한 표면에 자연산화막을 제거하기 위하여 Methanol 과 DI Water 로 표면을 세척 한 후 $NH_4OH$, Br in Methanol, HCl 등으로 적절한 화학적 에칭을 하여 산화막을 제거함으로서 순수한 InAsSb 의 유전함수를 측정할 수 있었다. 측정된 InAsSb 유전함수를 Standard analytic critical point line shape 방법으로 As 조성비에 따른 에너지 전이점을 얻을 수 있었다. 또한 얻어진 에너지 전이점 값을 이용하여 linear augmented Slater-type orbital 방법으로 전자 밴드 구조 계산을 하였고, 이를 바탕으로 $E_0$, $E_1$, $E_2$ 전이점 지역의 여러 전이점 ($E_1$, $E_1+\Delta_1$, $E_0'$, $E_0'+\Delta_0'$, $E_2$, $E_2+\Delta_2$, $E_2'$, $E_2'+\Delta_2$, $E_1'$) 의 특성을 정확히 정의할 수 있었다. 또한 As 조성비가 증가하면서 $E_2$, $E_2+\Delta_2$, $E_2'$, $E_2'+\Delta_2$ 전이점들이 서로 교차 되는 것을 발견하였고, 저온에서만 관측이 가능하였던 InSb 의 두 saddle-point (${\Delta_5}^{cu}-{\Delta_5}^{vu}$, ${\Delta_5}^{cl}-{\Delta_5}^{vu}$)를 상온에서 찾아내었다. 타원 편광 분석법을 이용한 전이점 연구 및 물성 분석은 InAsSb alloy 의 광학적 데이터베이스를 확보하는 성과와 더불어 새로운 디바이스기술 및 광통신 산업에도 유용한 정보가 될 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.