• Title/Summary/Keyword: Hexavalent uranium

Search Result 3, Processing Time 0.016 seconds

Excitation and Emission Properties of Adsorbed U(VI) on Amorphous Silica Surface

  • Jung, Euo Chang;Kim, Tae-Hyeong;Kim, Hee-Kyung;Cho, Hye-Ryun;Cha, Wansik
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.497-508
    • /
    • 2020
  • In the geochemical field, the chemical speciation of hexavalent uranium (U(VI)) has been widely investigated by performing measurements to determine its luminescence properties, namely the excitation, emission, and lifetime. Of these properties, the excitation has been relatively overlooked in most time-resolved laser fluorescence spectroscopy (TRLFS) studies. In this study, TRLFS and continuous-wave excitation-emission matrix spectroscopy are adopted to characterize the excitation properties of U(VI) surface species that interact with amorphous silica. The luminescence spectra of U(VI) measured from a silica suspension and silica sediment showed very similar spectral shapes with similar lifetime values. In contrast, the excitation spectra of U(VI) measured from these samples were significantly different. The results show that distinctive excitation maxima appeared at approximately 220 and 280 nm for the silica suspension and silica sediment, respectively.

Study on the Interaction of U(VI) Species With Natural Organic Matters in KURT Groundwater (KURT 지하수의 천연 유기물질과 6가 우라늄 화학종의 상호작용에 관한 연구)

  • Jung, Euo Chang;Baik, Min Hoon;Cho, Hye-Ryun;Kim, Hee-Kyung;Cha, Wansik
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.2
    • /
    • pp.101-116
    • /
    • 2017
  • The interaction of U(VI) (hexavalent uranium) species with natural organic matter (NOM) in KURT (KAERI Underground Research Tunnel) groundwater is investigated using a laser spectroscopic technique. The luminescence spectra of the NOM are observed in the ultraviolet and blue wavelength regions by irradiating a laser beam at 266 nm in groundwater. The luminescence spectra of U(VI) species in groundwater containing uranium concentrations of $0.034-0.788mg{\cdot}L^{-1}$ are measured in the green-colored wavelength region. The luminescence characteristics (peak wavelengths and lifetime) of U(VI) in the groundwater agree well with those of $Ca_2UO_2(CO_3)_3(aq)$ in a standard solution prepared in a laboratory. The luminescence intensities of U(VI) in the groundwater are weaker than those of $Ca_2UO_2(CO_3)_3(aq)$ in the standard solution at the same uranium concentrations. The luminescence intensities of $Ca_2UO_2(CO_3)_3(aq)$ in the standard solution mixed with the groundwater are also weaker than those of $Ca_2UO_2(CO_3)_3(aq)$ in the standard solution at the same uranium concentrations. These results can be ascribed to calcium-U(VI)-carbonate species interacting with NOM and forming non-radiative U(VI) complexes in groundwater.

Study on the Species Distributions of Dissolved U(VI) and Adsorbed U(VI) on Silica Surface (용존 6가 우라늄 및 실리카 표면 흡착 6가 우라늄 화학종 분포 연구)

  • Jung, Euo Chang;Kim, Tae-Hyeong;Jo, Yongheum;Kim, Hee-Kyung;Cho, Hye-Ryun;Cha, Wansik;Baik, Min Hoon;Yun, Jong-Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.1
    • /
    • pp.63-72
    • /
    • 2020
  • Dissolved hexavalent uranium can exist in the form of several different chemical species. Furthermore, species distributions depend on the pH value of the aqueous solution. Representatively, UO22+, UO2OH+, (UO2)2(OH)22+, and (UO2)3(OH)5+ species coexist in solutions at acidic and circumneutral pH values. When amorphous silica particles are suspended in an aqueous solution, the dissolved chemical species are easily adsorbed onto silica surfaces. In this study, it was examined whether the species distribution of the adsorbed U(VI) on a silica surface followed that of the dissolved U(VI) in an aqueous solution. Time-resolved luminescence spectra of three different dissolved species (UO22+, UO2OH+, and (UO2)3(OH)5+) and two different adsorbed species (≡SiO2UO2, ≡SiO2(UO2)OH-, or ≡SiO2(UO2)3(OH)5-) were measured in the pH range 3.5-7.5. The spectral shapes of these chemical species were compared by changing the pH value; consequently, it was confirmed that the species distribution of the adsorbed U(VI) species was different from that of the dissolved U(VI) species.