• Title/Summary/Keyword: Hexavalent Chromium(Cr VI)

Search Result 63, Processing Time 0.022 seconds

WASTE LEAVES AS REACTIVE MEDIA IN PERMEABLE REACTIVE BARRIERS FOR CR(VI) REMOVAL

  • Lee, Tae-Yoon;Park, Jae-Woo
    • Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • Hexavalent chromium in aqueous solutions was successfully removed via sorption and reduction in the presence of waste leaves. Cr(VI) removal followed a first-order reaction, and removal rates were proportional to the amount of waste leaves used in the tests. Most of Cr(VI) were removed via sorption in early stages of the tests, but the reduction reaction played a significant role in Cr(VI) removal later. Solution pHs were continuously decreased due to the microbial activity, which was induced from the microorganisms attached on waste leaves. The decreased solution pHs further enhanced the sorption and reduction of Cr(VI). To characterize the microorganisms found in the tests, a denaturing gradient gel electrophoresis (DGGE) method was used. The majority of microorganisms were composed of Bacillus sp. which can reduce Cr(VI). Thus, waste leaves can be effective reactive media for the treatment of Cr(VI) in the subsurface.

Simultaneous Determination of Chromium (III) and Chromium(VI) by High Performance Liquid Chromatography(HPLC) (고성능 액체크로마토그래피(HPLC)를 이용한 3가, 6가 크롬의 동시정량에 관한 연구)

  • Roh, Jae Hoon;Kim, Chi Nyon;Kim, Choon Sung;Kim, Kyoo Sang
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.4 no.2
    • /
    • pp.189-197
    • /
    • 1994
  • Analytic methods for Cr(VI) level in industrial hygienic field were suggested by the National Institute for Occupational Safety and Health(NIOSH method 7600, 7604). There were growing needs for measurement of Cr(III) and Cr(VI) levels simultaneously. Two analytical methods were suggested to determine Cr(III) and Cr(VI) levels simultaneously. The one is method by using reversed phase high peformance liquid chromatography(HPLC) and the other is by using ion exchange HPLC. The purpose of this work was to evaluate the usefulness of these two analytic methods. For the difference of ionic charges of Cr(III)-ethylendiamine tetraacetic acid(EDTA) chelate and $CrO_4{^-2}$, we could detect them simultaneously by ion exchange HPLC. Also, we attempted to determine the levels of Cr(III) and Cr(VI) chelated with sodium diethyldithiocarbamate(NaDDTC) by using reversed phase HPLC. The confirmation of Cr(III) and Cr(VI) were checked by fraction collector and nameless atomic absorption spectrometer. The optimal conditions for the formation of Cr(III)-EDTA chelate were two hours incubation period with pH 5. Cr(III)-EDTA and Cr(VI) in EDTA solution were successfully separated by anion exchange column using $Na_2CO_3/NaOH$ mixture as mobile phase. Peaks of Cr(III)-EDTA and Cr(VI) in EDTA were identified at 5 minutes and 7 minutes of retention time respectively by the ion exchange HPLC. The formation of Cr(III)-NaDDTC and Cr(VI)-NaDDTC chelates were twelve hours incubation period. Cr(III)-NaDDTC and Cr(VI)-NaDDTC chelates were separated by reversed phase column using methanol and water mixture as mobile phase. Peaks of Cr(VI)NaDDTC and Cr(III)-NaDDTC chelates were identified at 13 minutes and 26 minutes of retention time respectively by the reversed phase HPLC. Due to reduction of Cr(VI) to Cr(III), it seems to be not suitable for simultaneous determination of Cr(III)-NaDDTC and Cr(VI)-NaDDTC chelates by reversed phase HPLS. Simultaneos determination of Cr(III) and Cr(VI) by ion exchange HPLC was more accurate and simple method.

  • PDF

Toxic Activities of the Oxidant Chromate in Culture Cells (산화성 크롬의 배양세포에서의 독성작용)

  • 박형숙
    • Environmental Analysis Health and Toxicology
    • /
    • v.13 no.1_2
    • /
    • pp.1-9
    • /
    • 1998
  • The ROS-producing potency of chromium compounds of several oxidation states were determined in the H4 cells. $K_2Cr_2O_7$ as Cr (VI), synthetic Cr (V) compounds and Cr (III) as TPP produced high level of ROS. However, ROS values of Cr-picolinate as Cr (III), CrCl$_2$, CrCI$_2$, were almost equal to the control. The effects of physiological antioxidants compounds which react with free radicals were examined for their effects on chromate-induced production of reactive oxygen species (ROS) in A549 cells after the addition of $K_2Cr_2O_7$. The compounds used were vitamin C (ascorbate), vitamin E ($\alpha$-tocopherol), superoxide dismutase (SOD) and catalase. The preincubation of ascorbate (200uM) with A549 cells for 20hr resulted in a significant reduction of hexavalent chromate(100uM) induced ROS. However, there is no effects of preincubation of the cells with vitamin E succinate (10 and 20uM, 20hr) on the ROS production. Also, the effects of Cr (VI) on the cell cycle of A549 cells was measured by adding the DNA intercalating agent, propidium iodide. S phase of the cell cycle was increased by the chromium (VI) compounds up to 20uM indicating toxicity or possible mitogenic action of the cell. The shoulder in Go/G1 phase at 20uM Cr (VI) with 24 hr treatment indicates apoptosis.

  • PDF

Treatment of high hexavalent chromium plating wastewater (고농도 6가 크롬 도금 폐수 처리)

  • Kang, Chang Duk;Sim, Sang Jun;Hwang, Suk Hoon
    • Clean Technology
    • /
    • v.7 no.1
    • /
    • pp.75-80
    • /
    • 2001
  • In this study, hexavalent chromium (Cr(VI)) plating wastewater in strong acidic condition was treated by reduction and alkalization. Ferrous sulfate ($FeSO_4$), known to reduce Cr(VI) to Cr(III) rapidly at acidic pH, was used as a reductant of Cr(VI). The optimum reduction condition of Cr(VI) was observed at iron to chromium dose ratio of 3:1 by mole concentration. The precipitation of Cr(III) as $Cr(OH)_3$, was achieved by the pH adjustment in the limestone aeration bed. The precipitates were removed less than the upper limit of chromium for effluent at pH over 5.0. The continuous removal of Cr(VI) was performed using the process consisting of reduction vessel, limestone aeration bed, and sedimentation tank coupled with metal screen membrane. As pH was maintained around 5.0 in the limestone aeration bed, insoluble chromic hydroxide flocs was formed continuously. Most chromic hydroxide flocs were filtered by the metal screen membrane with 1450 mesh size, and the treated water to meet the upper limits of chromium for effluent (Cr Conc. 0.25~0.90 mg/l) was obtained in 30 minutes. Periodic backwashing decreased the fouling on the membrane rapidly.

  • PDF

Kinetic Analysis and Mathematical Modeling of Cr(VI) Removal in a Differential Reactor Packed with Ecklonia Biomass

  • Park, Dong-Hee;Yun, Yeoung-Sang;Lim, Seong-Rin;Park, Jong-Moon
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1720-1727
    • /
    • 2006
  • To set up a kinetic model that can provide a theoretical basis for developing a new mathematical model of the Cr(VI) biosorption column using brown seaweed Ecklonia biomass, a differential reactor system was used in this study. Based on the fact that the removal process followed a redox reaction between Cr(VI) and the biomass, with no dispersion effect in the differential reactor, a new mathematical model was proposed to describe the removal of Cr(VI) from a liquid stream passing through the differential reactor. The reduction model of Cr(VI) by the differential reactor was zero order with respect to influent Cr(IlI) concentration, and first order with respect to both the biomass and influent Cr(VI) concentrations. The developed model described well the dynamics of Cr(VI) in the effluent. In conclusion, the developed model may be used for the design and performance prediction of the biosorption column process for Cr(VI) detoxification.

Removal characteristics of chromium by activated carbon/CoFe2O4 magnetic composite and Phoenix dactylifera stone carbon

  • Foroutan, Rauf;Mohammadi, Reza;Ramavandi, Bahman;Bastanian, Maryam
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2207-2219
    • /
    • 2018
  • Activated carbon (AC) was synthesized from Phoenix dactylifera stones and then modified by $CoFe_2O_4$ magnetic nanocomposite for use as a Cr(VI) adsorbent. Both $AC/CoFe_2O_4$ composite and AC were fully characterized by FTIR, SEM, XRD, TEM, TGA, and VSM techniques. Based on the surface analyses, the addition of $CoFe_2O_4$ nanoparticles had a significant effect on the thermal stability and crystalline structure of AC. Factors affecting chromium removal efficiency like pH, dosage, contact time, temperature, and initial Cr(VI) concentration were investigated. The best pH was found 2 and 3 for Cr adsorption by AC and $AC/CoFe_2O_4$ composite, respectively. The presence of ion sulfate had a greater effect on the chromium sorption efficiency than nitrate and chlorine ions. The results illustrated that both adsorbents can be used up to seven times to adsorb chromium. The adsorption process was examined by three isothermal models, and Freundlich was chosen as the best one. The experimental data were well fitted by pseudo-second-order kinetic model. The half-life ($t_{1/2}$) of hexavalent chromium using AC and $AC/CoFe_2O_4$ magnetic composite was obtained as 5.18 min and 1.52 min, respectively. Cr(VI) adsorption by AC and $AC/CoFe_2O_4$ magnetic composite was spontaneous and exothermic. In general, our study showed that the composition of $CoFe_2O_4$ magnetic nanoparticles with AC can increase the adsorption capacity of AC from 36 mg/L to 70 mg/L.

Cr(VI) Removal from Artificial Groundwater by Granular Activated Carbon and Regeneration of the Spent Carbon (입상활성탄을 이용한 인공 조제 지하수내의 Cr(VI) 제거와 그 활성탄의 재생)

  • Ihnsup Han
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.11-31
    • /
    • 1999
  • Removal of hexavalent chromium from artificial groundwater (AGW) by granular activated carbon (GAC) was investigated in batch and continuous-flow column studies. Experimental parameters that were examined included solution pH, presence of dissolved oxygen (DO), and GAC pretreatment with Fe(II). As the solution pH increased from 4 to 7.5, the amount of Cr(VI) removed by both GACs decreased significantly. Exclusion of DO from the experimental systems resulted in greater removal of Cr(VI) from solution, possibly as a result of reduction to Cr(III). However, pretreatment of the GAC with a reductant (Fe(II)) did not improve Cr(VI) removal. Equilibration With 0.01 M $K_2$$HPO_4$[to extract adsorbed Cr(VI)] followed by a wash with 0.02 N $K_2$$HPO_4$[to remove precipitated/sorbed Cr(III)] proved to be a viable approach for the regeneration of carbons whose Cr(VI) removal capacities had been exhausted. The performance of the regenerated carbons exceeded that of the virgin carbons, primarily because of the favorable adsorption of Cr(VI) at lower pH values and the reduction of Cr(VI) to Cr(III), The presence of Cr(III) in acid wash solutions provides direct evidence that Cr(VI) is reduced to Cr(III) in GAC systems under relatively acidic conditions. GAC performance over five complete cycles was consistently high, which suggests that such a system will be able to function over many operation cycles without deleterious effects.

  • PDF

Cationized Lignin Loaded Alginate Beads for Efficient Cr(VI) Removal

  • Jungkyu KIM;YunJin KIM;Seungoh JUNG;Heecheol YUN;Hwanmyeong YEO;In-Gyu CHOI;Hyo Won KWAK
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.321-333
    • /
    • 2023
  • In this study, lignin, a lignocellulosic biomass, was chemically modified to produce polyethyleneimine-grafted lignin (PKL) with maximum hexavalent chromium [Cr(VI)] adsorption capacity. Changes in the physicochemical properties due to the cationization of lignin were confirmed through elemental analysis, Fourier transform infrared spectroscopy, and moisture stability evaluation. Alginate (Alg) beads containing PKL (Alg/PKL) were prepared by incorporating cationic lignin into the Alg matrix to apply the prepared PKL in a batch-type water treatment process. The optimal Alg/lignin mixing ratio was selected to increase the Cr(VI) adsorption capacity and minimize lignin elution from the aqueous system. The selected Alg/PKL beads exhibited an excellent Cr(VI) removal capacity of 478.98 mg/g. Isothermal adsorption and thermodynamic analysis revealed that the Cr(VI) removal behavior of the Alg/PKL beads was similar to that of heterogeneous chemical adsorption. In addition, the bulk adsorbent material in the form of beads exhibited adsorption behavior in three stages: surface adsorption, diffusion, and equilibrium.

Cloning of hexavalent chromium reductase gene from E.coli ATCC 33456

  • Lee, Han-Ki;Ahn, Min-Jung;Bae, Woo-Chul;Jeong, Byeong-Chul
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.672-675
    • /
    • 2000
  • E.coli ATCC 33456 has relatively higher activity of Cr(VI) reduction than other microorganism. The purpose of this research is cloning of Cr(V) reductase from E.coli ATCC 33456. Using colony and southern hybridization, we selected two condidates. Among candidates, pNCR9 is higher Cr(VI) reduction activity than E.coli ATCC 33456. Purified Cr(VI) reductase antibody was reacted at estimated 42Kda protein band of candidate's crude extract on 12% SDS-PAGE. This results showed cloned gene's product is very similar to purified Cr(VI) reductase from E.coli ATCC 33456.

  • PDF

Nanoporous carbon synthesized from grass for removal and recovery of hexavalent chromium

  • Pathan, Shahin A.;Pandita, Nancy S.
    • Carbon letters
    • /
    • v.20
    • /
    • pp.10-18
    • /
    • 2016
  • Nanoporous carbon structures were synthesized by pyrolysis of grass as carbon precursor. The synthesized carbon has high surface area and pore volume. The carbon products were acid functionalized and characterized by Fourier transform infrared spectroscopy, X-ray diffraction, Brunauer–Emmett–Teller, transmission electron microscopy, and Energy Dispersive X-ray microanalysis. Acid functionalized nanoporous carbon was explored for use in removal of toxic Cr(VI) ions from aqueous media. An adsorption study was done as a function of initial concentration, pH, contact time, temperature, and interfering ions. The experimental equilibrium data fits well to Langmuir isotherm model with maximum monolayer adsorption capacity of 35.335 mg/g. The results indicated that removal obeys a pseudo-second-order kinetic model, and that equilibrium was reached in 10 min. A desorption study was done using NaOH. The results of the present study imply that acid functionalized nanoporous carbon synthesized from grass is an efficient, renewable, cost-effective adsorbent material for removal of hexavalent chromium due to its faster removal rate and reusability.