• Title/Summary/Keyword: Hexagonal structure

Search Result 525, Processing Time 0.025 seconds

A Study on Fractal Monopole Antenna with Hexagonal Symmetrical Pattern (육각형 대칭 패턴 프랙탈 모노폴 안테나에 대한 연구)

  • Chang, Tae-Soon;Kang, Sang-Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.121-126
    • /
    • 2022
  • This study is about an antenna implemented in the form of a monopole having a hexagonal symmetric pattern by simplifying the modified Hilbert curve fractal monopole structure. The modified Hilbert curve fractal monopole structure was simplified and miniaturized, and the radiator was implemented in a hexagonal symmetrical pattern to improve performance. The dielectric constant of substrate is 4.7, and the total line length with a meander-shaped symmetrical structure is 59 mm. The size of the antenna is 10 mm × 10 mm × 0.8 mm, and the line width is 0.4 mm. The size of the antenna measuring jig is 64 mm × 21 mm × 1 mm. The resonant frequency is 1.57 GHz, and the frequency range is 1.51 to 1.615 GHz. The frequency bandwidth is 105 MHz. As for the antenna gain, the measurement gain of the YZ-plane was 2.32 dBi, and that of the XZ-plane was -1.03 dBi. As a result, we confirmed that antenna miniaturization is possible using a hexagonal symmetric pattern fractal structure. In addition, we confirmed that the antenna performance can be easily improved by changing the structure of the radiator.

Development of High-Definition PDP TV with High-Efficient Hexagonal Array Structure

  • Lee, Byung-Hak;Heo, Eun-Gi;Yoon, Cha-Keun;Lee, Kwang-Sik;Cho, Yoon-Hyoung;Yoo, Min-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.347-350
    • /
    • 2003
  • Optimization of the luminance, luminous efficiency, and address voltage margin characteristics has been made on the delta color array PDP with various hexagonal shape subpixels. The optimal subpixel and electrode designs are obtained for the 42-inch high-definition PDP ($1,366{\times}768$) with the fine pixel pitch less than 0.7 mm. The hexagonal delta array structure shows more improved characteristics than that of the normal delta array structure with rectangular shape subpixels.

  • PDF

A Study on the Forming Process of Honeycomb Core by Finite Element Analysis (유한요소해석에 의한 하니컴 코어의 성형공정에 관한 연구)

  • Han, Kyu-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.58-64
    • /
    • 2011
  • In this paper, research on the manufacturing technology of hexagonal structure core is investigated. Also the optimal forming process of the honeycomb core is developed and the rolling process is analyzed using finite element code, $DEFORM^{TM}$-3D. The standard honeycomb has a uniform hexagonal structure defined by the material, cell size, cell wall thickness and bulk density. Honeycomb core products can be made from any thin, flat material. The most common cell configuration is the hexagon but there are many other shapes for special applications. Because of the precision shape and the thin thickness, the honeycomb core is not easy to manufacture in the metal forming process. Through this study it was confirmed that after the rolling process, the section of honeycomb close to the standard shape can be obtained. This result is reflected to the manufacturing process design for the honeycomb core.

Analysis of Light Transmittance according to the Array Structure of Collagen Fibers Constituting the Corneal Stroma (각막실질 콜라겐섬유의 배열구조에 따른 광투과율 분석)

  • Lee, Myoung-Hee;Kim, Young-Chul
    • The Korean Journal of Vision Science
    • /
    • v.20 no.4
    • /
    • pp.561-568
    • /
    • 2018
  • Purpose : The size and regular array of the collagen fibers in the corneal stroma have very close correlation with transparency. Simulation was carried out to investigate the change of light transmittance according to the array structure and collagen fiber layer thickness. Methods : The collagen fibers in corneal stroma were arranged in regular hexagonal, hexagonal, square and random shapes with OptiFDTD simulation software, and the light transmittance was analyzed. In square array, the light transmittance according to the density change was confirmed by when the number of collagen fibers in the simulation space was the same and the light transmittance was examined when the number and density of collagen fibers were changed. Results : When the number of collagen fibers is the same, the density becomes smaller and the thickness of the fibrous layer becomes thicker in order of arrangement of square, regular hexagonal, random and hexagonal. As a result of measuring the light transmittance by changing the array structure, the light transmittance measured at the detector at the same position was almost similar regardless of the array structure. In the detectors D0, D1, D2 and D3, the maximum transmittance is shown in square, hexagonal and square, regular hexagonal and regular hexagonal array structure, and the minimum transmittance is hexagonal, random, hexagonal and square, and square array structure. However, the difference between the maximum transmittance and the minimum transmittance was almost the same within 1%. When the number of collagen fibers was the same, the light transmittance of the rectangular array structure decreased with increasing fiber layer thickness. And as the thickness increased, the light transmittance decreased more when the number of collagen fibers decreased. Conclusion : Even though the collagen array structure changed, the light transmittance is almost similar regardless of the arrangement structure. However, as the array structure was changed, the thickness of the collagen fiber layer changed, and as the thickness increased, the light transmittance decreased. In other words, the transparency of the corneal stroma is more closely related to the thickness of the fibrous layer than the array of collagen fibers.

Influence of Crystal Structure on the Chemical Bonding Nature and Photocatalytic Activity of Hexagonal and Cubic Perovskite Compounds

  • Lee, Sun-Hee;Kim, In-Young;Kim, Tae-Woo;Hwang, Seong-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.817-821
    • /
    • 2008
  • We have investigated the influence of the crystal structure on the chemical bonding nature and photocatalytic activity of cubic and hexagonal perovskite A[$Cr_{1/2}Ta_{1/2}$]O3 (A = Sr, Ba) compounds. According to neutron diffraction and field emission-scanning electron microscopy, the crystal structure and particle size of these compounds are strongly dependent on the nature of A-site cations. Also, it was found that the face-shared octahedra in the hexagonal phase are exclusively occupied by chromium ions, suggesting the presence of metallic (Cr-Cr) bonds. X-ray absorption and diffuse UV-vis spectroscopic analyses clearly demonstrated that, in comparison with cubic Sr[$Cr_{1/2}Ta_{1/2}$]$O_3$ phase, hexagonal Ba[$Cr_{1/2}Ta_{1/2}$]$O_3$ phase shows a decrease of Cr oxidation state as well as remarkable changes in interband Cr d-d transitions, which can be interpreted as a result of metallic (Cr-Cr) interactions. According to the test of photocatalytic activity, the present semiconducting materials have a distinct activity against the photodegradation of 4-chlorophenol. Also the Srbased compound was found to show a higher photocatalytic activity than the Ba-based one, which is attributable to its smaller particle size and its stronger absorption in visible light region.

Hexagonal Grid Shadow Generation using Bézier Curves (베지어 곡선을 활용한 육각 그리드의 그림자 생성 방법)

  • Minseok Kim;Taekgwan Nam;Youngjin Park
    • Smart Media Journal
    • /
    • v.12 no.4
    • /
    • pp.47-57
    • /
    • 2023
  • The hexagonal grid structure has been studied for processing and representing spatial information data in Geographic Information Systems. Visualization using a hexagonal grid has high visibility compared to other grid representation methods. However, it is difficult to effectively convey quantitative data and differences between grids depending on the geospatial data represented. In this paper, we propose a method to visually emphasize the hexagonal grid by generating shadow on the outside of the hexagonal grid. To do so, we offset the outer line segments of the hexagonal grid to be emphasized and generate a Bézier curve based on that information to determine the final shadow shape. We also apply variable transparency toward the edges of the shadow because the shadow gradually fades away from the hexagonal grid. We have shown that the proposed method can effectively generate shadow areas given not only a single hexagonal grid but also multiple hexagonal grids and can generate various shadow shapes based on user interface inputs. We apply the proposed method to Yongsan-gu, one of the districts of Seoul, and show the results of visually emphasizing it after generating shadow using the proposed method.

A Study on the S-block Structure in Hexagonal Ferrites (육방정 페라이트의 S-block 구조에 대한 연구)

  • 신형섭;이종협;권순주
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.1
    • /
    • pp.62-68
    • /
    • 1994
  • It is compared the structures of the S-block in the Ba-Co-Zn Y-type hexagonal ferrites (Ba2Co2-xZnxFe12O22, x=0~2) and the Co-Zn spinel ferrites (Co1-xZnxFe2O4, x=0~1) expressed by a hexagonal axis system (space group R3m). The structures have been refined with a Rietveld analysis of the powder X-ray diffraction pattern with high precision (Rwp<0.13, RI<0.03). The overal dimension of the S-block is slightly different from the 1/3 of a hexagonal spinel unit cell as follow: 1.6~2.0% longer c-axis, 1.3~1.6% shorter a-axis and about 1% smaller volume. Upto Zn:Co=1:1 in the Ba-Co-Zn Y-type hexagonal ferrites, the zinc substitute primarily the tetrahedral sites in the S-block. Beyond that the zinc seems to go into the T-block as well.

  • PDF

A Study on Optimization of Structure for Hexagon Tile Sub-array Antenna System (Hexagon 타일 부배열 안테나 시스템 구조 최적화에 관한 연구)

  • Jung, Jinwoo;Pyo, Seongmin
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.129-132
    • /
    • 2022
  • In this paper, a technique for optimizing the sub-array system structure that can minimize the side lobe level of the phased-array antenna is proposed. Optimization of the proposed array antenna structure is to adjust the spacing between sub-arrays and sub-arrays by using a hexagonal array structure of one sub-array and a hexagonal sub-array for six hexagonal arrays, and thus the entire phased array antenna system of the radiation pattern was optimized. Compared to the 2-dimensional planar antenna system, the proposed technique maintains a gain of 24.3 dBi and a half-power beam-width of 8.46 degrees without change, and only reduces -3.4 dB and -6.5 dB in the x-axis and y-axis directions, respectively.

Preparation of Hexagonal Boron Nitride from Boron Oxide and Sodium Amide (산화붕소의 소듐아미드로부터 육방정 질화붕소의 합성)

  • 손영국;장윤식;오기동
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.7
    • /
    • pp.869-876
    • /
    • 1990
  • Hexagonal boron nitride was synthesized from boron oxide and sodium amide in ammonia gas stream. The reaction mechanisms and characteristics of as synthesized boron nitride was investigated by means of TG, DTA, IR, XRD, SEM and PSA. The results are ; 1) hexagonal boron nitride was synthesized from reactions at temperatures above 40$0^{\circ}C$ 2) Sodium metaborate was present as by-product after reaction so that the reaction mechanism is reduced as follows : 2B2O3+3NaNH2longrightarrowBN+3NaBO2+2NH3. 3) boron nitride obtained at the reaction temperature below 40$0^{\circ}C$ is found to have random layer strudcture but the structure transits to ordered layer structure rapidly with increasing reaction temperature, showing separation of (101) differaction line from (10)band in XRD pattern of the reaction product at 50$0^{\circ}C$.

  • PDF

Design of a Polarization Splitter Based on a Dual-core Hexagonal-shaped Photonic Crystal Fiber

  • Jegadeesan, Subramani;Dhamodaran, Muneeswaran;Azees, Maria;Murugan, Arunachalam
    • Current Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.304-310
    • /
    • 2019
  • In this paper, a microstructured, hexagonal-shaped dual-core photonic crystal fiber (PCF) is proposed. The proposed structure has specific optical properties to obtain high birefringence and short coupling length, for different values of structural parameters varied over a wide range of wavelength. The properties are analyzed using a solid core of silica material. The proposed structure is implemented as a polarization splitter with splitting length of 1.9 mm and a splitting ratio of -34.988 dB, at a wavelength of 1550 nm. The obtained bandwidth in one band gap of about 81 nm. The numerical analysis ensures that the performance of the proposed polarization splitter is better than that of existing ones.