• Title/Summary/Keyword: Hexagonal blocks

Search Result 15, Processing Time 0.02 seconds

An Estimation of Shear Capacity of Hexagonal Masonry Walls Under Cyclic Loading (반복하중을 받는 육각형 블록 벽체 전단내력평가)

  • Chang, Gug-Kwan;Seo, Dae-Won;Han, Tae-Kyoung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.205-214
    • /
    • 2010
  • Masonry structures have been used throughout the world for the construction of residential buildings. However, from a structural point of view, the masonry material is characterized by a very low tensile strength. Moreover, the bearing and shear capacity of masonry walls have been found to be vulnerable to earthquakes. In this study, to improve the seismic performance of masonry walls, hexagonal blocks were developed and six masonry walls made with hexagonal block were tested to failure under reversed cyclic lateral loading. This paper focuses on an experimental investigation of different types of wall with hexagonal blocks, i.e. walls with different hexagonal blocks and with different reinforcing bar arrangements, subjected to applied cyclic loads. The cracking, damage patterns and hysteretic feature were evaluated. Results from the hexagonal masonry wall were shown more damage reduction and less brittle failure in comparison to the existing rectangular masonry walls.

Crystal and Block Structures of Hexagonal Ferrites (육방정 페라이트의 결정과 Block 구조)

  • Shin, Hyung-Sup
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.3
    • /
    • pp.205-215
    • /
    • 2012
  • It has been studied the crystal and block structures of the hexagonal ferrites with M, W, Y and Z types prepared by various coprecipitation-oxidation method. The structures have been refined with a Rietveld analysis of the powder X-ray diffraction pattern with high precision ($R_{WP}$ <0.09, $R_I$ <0.03). The density difference between the S-blocks was proportioned to the cobalt contents in hexagonal ferrites, but that between the R or T-blocks was relatively small. Compared with the blocks and cation-oxygen polyhedra in BaM ($BaFe_{12}O_{19}$), those were bulky to the normal direction for the c-axis in $Co_2W$ ($BaCo_2Fe_{16}O_{27}$) and to the parallel direction for the c-axis in $Co_2Y$ ($Ba_2Co_2Fe_{12}O_{22}$) and $Co_2Z$ ($Ba_3Co_2Fe_{24}O_{41}$). The S-blocks of $Co_2W$, $Co_2Y$, and $Co_2Z$ were unstable and distorted. Because the T-block of $Co_2Z$ was unstable, the T-block was decomposed into the Ba-rich phase and $Co_2W$ at high temperatures above $1200^{\circ}C$. A standard powder X-ray diffraction pattern for $Co_2Z$ was proposed as well.

Molecular approach to hexagonal and cubic diamond nanocrystals

  • Abdulsattar, Mudar Ahmed
    • Carbon letters
    • /
    • v.16 no.3
    • /
    • pp.192-197
    • /
    • 2015
  • In the present work, we propose a molecule (C14H14) that can be used as a building block of hexagonal diamond-type crystals and nanocrystals, including wurtzite structures. This molecule and its combined blocks are similar to diamondoid molecules that are used as building blocks of cubic diamond crystals and nanocrystals. The hexagonal part of this molecule is included in the C12 central part of this molecule. This part can be repeated to increase the ratio of hexagonal to cubic diamond and other structures. The calculated energy gap of these molecules (called hereafter wurtzoids) shows the expected trend of gaps that are less than that of cubic diamondoid structures. The calculated binding energy per atom shows that wurtzoids are tighter structures than diamondoids. Distribution of angles and bonds manifest the main differences between hexagonal and cubic diamond-type structures. Charge transfer, infrared, nuclear magnetic resonance and ultraviolet-visible spectra are investigated to identify the main spectroscopic differences between hexagonal and cubic structures at the molecular and nanoscale. Natural bond orbital population analysis shows that the bonding of the present wurtzoids and diamondoids differs from ideal sp3 bonding. The bonding for carbon valence orbitals is in the range (2s0.982p3.213p0.02)-(2s0.942p3.313p0.02) for wurtzoid and (2s0.932p3.293p0.01)-(2s0.992p3.443p0.01) for diamantane.

Seismic Performance Evaluation of Hexagonal Blocks Infilled RC Frames (육각형 블록을 이용한 채움벽 RC 골조의 채움벽 내진성능평가)

  • Chang, Kug Kwan;Seo, Dae Won;Ko, Tae Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.116-124
    • /
    • 2011
  • RC frames with unreinforced masonry infiledl walls are common in worldwide. Since infilled walls are normally considered as non-structural elements, their presence is often ignored by engineers. In this study, to improve the seismic performance of masonry walls, hexagonal block was developed and the influence of masonry infilled wall on the seismic performance of reinforced concrete(RC) frames that were designed in accordance with current code provisions without the consideration of earthquake loadings are investigated. Two 1/2 scale, single story, single bay, frame specimens were tested. The parameters investigated included that the strength of infilled wallls with respect to that of the lateral load history. The experimental results indicate that infilled walls can significantly improve the lateral stiffness and strength of RC frames. The lateral loads developed by the infilled frame specimen is higher than that of the bare frame. It also indicates that infilled walls can be potentially used to improve the performance of existing nonductile frames. For this purpose. methods should be developed to avoid irreparable damage and catastrophic failure.

Preparation of Self-Assembled Crystalline Microparticles with Bispyridyl Zn-Porphyrin

  • Lee, Da-Hee;Lee, Suk-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1317-1320
    • /
    • 2012
  • Well-defined solid-state microcrystalline structures from bispyridyl Zn-porphyrin have been successfully synthesized. The coordinative interactions between pyridine and Zn are main responsible for this translation of porphyrin molecular building blocks to crystalline microscopic objects. The hexagonal plates are obtained from acetonitrile and rhombus plates are grown from toluene solution. With a simple manipulation during the microcrystal growth, such as growth temperature and time, the morphologies can be controlled by adopting different molecular packing. Consequently, morphologies of microcrystals have been diversified.

A Fast Block Matching Motion Estimation Algorithm by using the Enhanced Cross-Hexagonal Search Pattern (개선된 크로스-육각 패턴을 이용한 고속 블록 정합 움직임 추정 알고리즘)

  • Nam Hyeon-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.4 s.42
    • /
    • pp.77-85
    • /
    • 2006
  • There is the spatial correlation of the video sequence between the motion vector of current blocks. In this paper, we propose the enhanced fast block matching algorithm using the spatial correlation of the video sequence and the center-biased properly of motion vectors. The proposed algorithm determines an exact motion vector using the predicted motion vector from the adjacent macro blocks of the current frame and the Cross-Hexagonal search pattern. From the of experimental results, we can see that our proposed algorithm outperforms both the prediction search algorithm (NNS) and the fast block matching algorithm (CHS) in terms of the search speed and the coded video's quality. Using our algorithm, we can improve the search speed by up to $0.1{\sim}38%$ and also diminish the PSNR (Peak Signal Noise Ratio) by at nst $0.05{\sim}2.5dB$, thereby improving the video qualify.

  • PDF

Microstructure of zinc electrodeposits in acid sulfate solution (黃酸亞鉛 電解液을 使用한 亞鉛電着層의 顯微鏡 組織)

  • Ye, Gil-Chon;An, Deok-Su;Kim, Yong-Ung
    • Journal of the Korean institute of surface engineering
    • /
    • v.18 no.2
    • /
    • pp.53-60
    • /
    • 1985
  • The microstructure of zine electrodeposits was investigated by using zinc sulfate solution in still bath. The cathode current efficiency decreased with increasing current density, and decreasing temperature. The preferred orientation of the zinc electrodeposits changed from (10.3) texture to(10.${\ell}$)-(00.1)(${\ell}$=1, 2, 3) texture through (10.2)-(10.3) preferred orientation with increasing cathode over potential. The surface morphology of zinc electrodeposits changed from the dendritic growth with granular crystallites to the blocks of hexagonal crystallites packed together with increasing current density. The microstructure of cross section of the above deposits are the rough granular structure and columnar structure respectively.

  • PDF

The effect of electrolyte flow on the microstructure of zinc electrodeposits (亞鉛電着層의 현미경조직에 미치는 電解液흐름의 影響)

  • Ye, Gil-Jae;Kim, Yong-Ung;An, Deok-Su
    • Journal of the Korean institute of surface engineering
    • /
    • v.18 no.4
    • /
    • pp.164-183
    • /
    • 1985
  • The microstructure of the zinc electrodeposits was investigated by changing the flow rate of electrolyte in zinc sulfate Bath. The cathode current efficiency increased with increasing flow rate of electrolyte. The preferred orientation of zinc electrodeposit changed from (11.2) texture to (10.3) or (10.1)+(10.2) texture with increasing current density in the range of flow rate, 0.2-1.2m/sec. The morphology of the deposits changed from the sponge deposit to the blocks of hexagonal crystallites packed together through the structures of find polycrystallite with increasing current density. The microstructure of the cross-section of the above deposits are granular structure and columnar structure respectively. The surface roughness of zinc electrodeposits decreased with increasing current density and flow rate of electrolyte.

  • PDF

Development of Environment Friendly Permeable Concrete Bio Blocks (친환경 투수 콘크리트 바이오 블록의 개발)

  • Song, Hyeon-Woo;Lee, Joong-Woo;Kwon, Seong-min;Lee, Tae-Hyeong;Oh, Hyeong-Tak
    • Journal of Navigation and Port Research
    • /
    • v.44 no.4
    • /
    • pp.305-311
    • /
    • 2020
  • Rising sea levels along the coast from global warming causes the increase of wave energy along the coast. This rise in sea levels results in relatively deep water levels, which would incur the loss of sand that had not occurred in the past from erosion in coastal areas. Generally, it has been challenging to protect against coastal erosion, and the slope, cross-sectional shape, and materials are selected for the site conditions depending on the change in external forces. However, the application of counter measures based on insufficient understanding of the phenomenon is causing various damage, indicating the need for technological development and converging technologies to improve credibility. In this study, we developed eco-friendly permeable biopolymer concrete blocks to control the coastal erosion by using the Bio-Coast, an effective porous structure that mitigates the destructive erosion caused by the rising sea levels. The hexagonal design of Bio-Coast was derived from the honeycomb, columnar joints, and clover, which are durable and stable structures in nature, and the design was changed to apply bumps on the Bio-Coast filling in the form of a clover to reduce wave overtopping and run-up. Applying the field condition of beaches on the east coast of Korea, the block weight and size were decided and the prototype blocks were manufactured and are ready for field placement. In particular, it is intended to protect coastal areas from destructive erosion by natural and artificial external forces, and to extend the design to river,s lakes, and natural walking trails, to improve the efficiency of quality control and process control through the use of blocks.

Two-dimensional heterostructures for All-2D Electronics

  • Lee, Gwan-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.100-100
    • /
    • 2016
  • Among various two-dimensional (2D) materials, 2D semiconductors and insulators have attracted a great deal of interest from nanoscience community beyond graphene, due to their attractive and unique properties. Such excellent characteristics have triggered highly active researches on 2D materials, such as hexagonal boron nitride (hBN), molybdenum disulfide (MoS2), and tungsten diselenide (WSe2). New physics observed in 2D semiconductors allow for development of new-concept devices. Especially, these emerging 2D materials are promising candidates for flexible and transparent electronics. Recently, van der Waals heterostructures (vdWH) have been achieved by putting these 2D materials onto another, in the similar way to build Lego blocks. This enables us to investigate intrinsic physical properties of atomically-sharp heterostructure interfaces and fabricate high performance optoelectronic devices for advanced applications. In this talk, fundamental properties of various 2D materials will be introduced, including growth technique and influence of defects on properties of 2D materials. We also fabricate high performance electronic/optoelectronic devices of vdWH, such as transistors, memories, and solar cells. The device platform based on van der Waals heterostructures show huge improvement of devices performance, high stability and transparency/flexibility due to unique properties of 2D materials and ultra-sharp heterointerfaces. Our work paves a new way toward future advanced electronics based on 2D materials.

  • PDF