• Title/Summary/Keyword: Hexagonal

Search Result 1,311, Processing Time 0.026 seconds

Influence of Sputter Power on the Structural and Optical Properties of CdS Films for Photovoltaic Applications (태양전지용 CdS 박막의 구조적, 광학적 물성에 미치는 스퍼터 전력 효과)

  • Lee, Jae-Hyeong;Lim, Dong-Gun;Yang, Kea-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.4
    • /
    • pp.322-327
    • /
    • 2006
  • CdS films have been prepared on polycarbonate, polyethylene terephthalate, and Coming 7059 substrates by r.f magnetron sputtering technique at room temperature. A comparison of the properties of the films deposited on polymer and glass substrates was performed. In addition, the influence of the sputter power on the structural and optical properties of these films was evaluated. The XRD measurements revealed that CdS films were polycrystalline and retained the mixed structure of hexagonal wurtzite and cubic phase, regardless of substrate types. As the sputter power was increased from 75 to 150 Watt, the structure of CdS films was converted from the mixed of hexagonal and cubic phase to hexagonal phase. The morphology of CdS films is found to be continuous and dense. Also, the grain of CdS films is larger with increasing the sputter power. The average transmittance exceeded 80 % in the visible spectrum for all films and decreases slightly with the sputter power.

Electrochemical Non-Enzymatic Glucose Sensor based on Hexagonal Boron Nitride with Metal-Organic Framework Composite

  • Ranganethan, Suresh;Lee, Sang-Mae;Lee, Jaewon;Chang, Seung-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.379-385
    • /
    • 2017
  • In this study, an amperometric non-enzymatic glucose sensor was developed on the surface of a glassy carbon electrode by simply drop-casting the synthesized homogeneous suspension of hexagonal boron nitride (h-BN) nanosheets with a copper metal-organic framework (Cu-MOF) composite. Comprehensive analytical methods, including field-emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), cyclic voltammetry, electrochemical impedance spectroscopy, and amperometry, were used to investigate the surface and electrochemical characteristics of the h-BN-Cu-MOF composite. The FE-SEM, FT-IR, and XRD results showed that the h-BN-Cu-MOF composite was formed successfully and exhibited a good porous structure. The electrochemical results showed a sensor sensitivity of $18.1{\mu}A{\mu}M^{-1}cm^{-2}$ with a dynamic linearity range of $10-900{\mu}M$ glucose and a detection limit of $5.5{\mu}M$ glucose with a rapid turnaround time (less than 2 min). Additionally, the developed sensor exhibited satisfactory anti-interference ability against dopamine, ascorbic acid, uric acid, urea, and nitrate, and thus, can be applied to the design and development of non-enzymatic glucose sensors.

Optical Properties of Middle Infrared Transparent ZnS Ceramics at Various Sintering Temperatures (소결온도에 의한 중적외선 투과용 ZnS 세라믹스의 광학적 특성)

  • Yeo, Seo-Yeong;Kwon, Tae-Hyeong;Kim, Chang-Il;Paik, Jong-Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.249-253
    • /
    • 2018
  • Infrared transparent ZnS ceramics were synthesized through hydrothermal synthesis ($180^{\circ}C$, 70 h) and sintered using a hot press process at $750^{\circ}C-1000^{\circ}C$. We carried out x-ray diffraction, scanning electron microscopy, and Fourier transform-infrared spectroscopy to confirm the optical properties of the ZnS ceramics after sintering at various temperatures. The phase of ZnS nanopowders was a single phase (cubic) without the hexagonal phase. However, as sintering temperature increased, the formation and increment of hexagonal structures was confirmed. The ZnS ceramic sintered at a temperature of $750^{\circ}C$ showed poor transmittance because it was not completely sintered and because of the pore effect. The ZnS ceramic with the highest transmittance (approximately 69%) was sintered at $800^{\circ}C$. As sintering temperature increased, transmittance gradually decreased owing to the increase in the formation of the hexagonal phase.

A Study on Enhancement of MIR Transmittance of Hydrothermally Synthesized ZnS Nanoparticles with Sintering Pressure (수열합성된 황화아연 나노입자의 소결 압력에 따른 중적외선향상에 관한 연구)

  • Yeo, Seo-Yeong;Park, Buem-Keun;Paik, Jong-Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.63-67
    • /
    • 2020
  • This study investigated the influence of various sintering pressures of ZnS nanoparticles prepared by hydrothermal synthesis performed at 220 ℃ for 20 h. The hydrothermally synthesized ZnS nanoparticles formed a cubic phase. The ZnS nanoparticles were sintered using a hot-press process at 850 ℃ for 2 h under pressures of 10, 20, 30, 40, 50, 60, and 70 MPa. The ZnS ceramics indicate the cubic phase is the major phase and the hexagonal phase is the minor phase. In the ZnS ceramics, as the sintering pressure increased, a decrement in the hexagonal phase was confirmed. When the sintering pressure equaled or exceeded 30 MPa, the transmittance and density improved with reductions in porosity and hexagonal phase. A sintering pressure of 60 MPa delivered the highest transmittance (69.7%).

Morphological changes of $BaCO_3$ microcrystal with the synthetic conditions (합성조건에 따른 $BaCO_3$ 마이크로 결정의 형태 변화)

  • Choi, Eun-Jee;Huh, Young-Duk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.5
    • /
    • pp.223-227
    • /
    • 2009
  • $BaCO_3$ crystals with various morphology were prepared using precipitation, hydrothermal and ligand-assisted methods. An irregular structure of $BaCO_3$ microparticle was obtained by simple precipitation method from $Ba(NO_3)_2$ and $Na_2CO_3$ in aqueous solution. Hexagonal pyramidals of $BaCO_3$ were synthesized using a hydrothermal method between $Ba(NO_3)_2$ and urea. Hexagonal rods of $BaCO_3$ were also synthesized using the ligand-assisted hydrothermal method. The aspect ratio of $BaCO_3$ hexagonal rods was increased with the concentration of ligand.

Crystal Growth and Solid Solution of Hexagonal Ferrites (육방정 페라이트의 고용성 및 단결정 육성 연구)

  • 강진기;박병규;정수진
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.3
    • /
    • pp.78-86
    • /
    • 1986
  • single crystals of various hexagonal ferrites were grown by a flux technique. For the growing experiment platinum crucibles of size 40 cc and a horizontal siliconit tube furnace were used. Charges consisted of the flux of BaO(SrO)/$B_2O_3$ and the composition of crystals in the system of BaO $(SrO)-Fe_2O_3-ZnO$. The BaO(SrO)/$B_2O_3$ molar ratio of the flux were varied from 1 to 3. Crystals up to 12.5mm in diameter were grown by slow cooling of melts from a maximum temperature of 1, 30$0^{\circ}C$or 1, 350$0^{\circ}C$ to 95$0^{\circ}C$ or 1, 00$0^{\circ}C$ The grown crystals exhibited a tabular hexagonal habits with very well developed ba-sal planes and narrow pyramidal faces of {1011} {1012} and {0001}. For the identification of the grown crystals X-ray diffraction studies were carried out. The effects of va-riations in flux ratio flux percentage and cooling rate on the quality of the grown crystals were studied. Cry-stal habits hillocks etch steps and growth spirals were observed by optical microscope. Magnetic properties of single crystals were measured.

  • PDF

Effective Longitudinal Shear Modulus of Continuous Fiber-Reinforced 2-Phase Composites (연속섬유가 보강된 2상 복합재료의 종방향 전단계수 해석)

  • Lee, Dong-Ju;Jeong, Tae-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2770-2781
    • /
    • 1996
  • Longitudinal shear modulus of continuous fiber reinforced 2-phase composites is predicted by theoretical and numerical analysis methods. In this paper, circular, hexagonal and rectangular shapes of reinforced fiber are considered using unit cell concept. And fiber array is regular rectangular and hexagonal fiber arrangement. Longitudinal shear modulus is a function of fiber distribution pattern and fiber volume change. It is found that the rectangular array has a higher longitudinal shear modulus than the hexagonal one. Also, the rectangular fiber shape in lower fiber volume fraction and the circular fiber shape in higher fiber volume fraction show the higher longitudinal shear modulus. And it has been found that the theoretical and numerical predictions of the longitudinal shear modulus give a good agreement with the experimental data at lower fiber volume fraction. Both the distance and stress transfer between the fibers are discussed as the major determing factors.

Structural and Optical Characteristics of ZnS:Mn Thin Film Prepared by EBE Method (전자빔 증착법으로 제작된 ZnS:Mn 박막의 구조 및 광학적 특성)

  • 정해덕;박계춘;이기식
    • Electrical & Electronic Materials
    • /
    • v.10 no.10
    • /
    • pp.1005-1010
    • /
    • 1997
  • ZnS:Mn thin film was made by coevaporation with Electron Beam Evaparation(EBE) method. And structural and optical characteristics of ZnS:Mn thin films were investigated by substrate temperature annealing temperature and dopant Mn. When ZnS:Mn thin film was well deposited with cubic crystalline at substrate temperature of 30$0^{\circ}C$ its surface index was [111] and its lattice constant of a was 5.41$\AA$. Also When ZnA:Mn thin film was well made with hexagonal crystalline at substrate temperature of 30$0^{\circ}C$annealing temperature of 50$0^{\circ}C$and annealing time of 60min its miller indices were (0002) (1011), (1012) and (1120). And its lattice constant of a and c was 3.88$\AA$and 12.41$\AA$ respectively. Finally hexagonal ZnS:Mn thin film with dopant Mn of 0.5wt% had fundamental absorption wavelength of 342nm. And so its energy bandgap was about 3.62eV.

  • PDF

A study on Design of Crane Post for Multi-Purpose Cargo vessel (다목적 화물선의 Crane Post설계에 관한연구)

  • Jeon, Tae-Byeong;Im, Chae-Hwan
    • 한국기계연구소 소보
    • /
    • s.16
    • /
    • pp.127-136
    • /
    • 1986
  • Recently deck crane of multi purpose cargo vessel (MPCV) is designed to posi¬tion in side instead of in the center line of the upper deck with a view to reduce the transportation cost and shipbuilding cost by shortening the length of ship. In this paper, the crane post was at first designed according to the crane maker’s specification and parent ship and the structure is analysed with Finite Ele¬ment Method. Through the careful reviews on the result of analysis, the final design of crane post was modified. The crane post is designed as a cylindrical in upper part and hexagonal in lower part instead of cylindrical on the whole as before. The connecting part of crane post is designed with the form of mixture of the cylinderical and hexagonal. Since the center of cylindrical and hexagonal section are not on the same line, it is expected to have the stress concentration. So, in order to attenuate the concentrated stress on the connecting part, the upper and lower parts was stiffened by inserting plate to enlarge the area of welding. The structure of deck part includes the tank side floor which is depend on the lower structure of the crane post that would support the force of the crane post by placing with 1.5 frame interval of the vertical plate.

  • PDF

THE EFFECTS OF THE DESIGN OF ABUTMENT SCREW DRIVER ON THE AMOUNT OF TIME FOR INSERTION OF SCREW DRIVER INTO ABUTMENT SCREW HEAD (임플랜트 지대주 나사와 드라이버의 설계가 보철물 장착 및 철거 시간에 미치는 영향에 관한 연구)

  • Kim Seong-Kyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.2
    • /
    • pp.258-263
    • /
    • 2005
  • Statement of problem. Implant screw loosening has been remained a problem in implant prosthodontics. The time needed to insert screw driver into abutment screw head should be shortened for the purpose of decreasing the chair time. Purpose. The purpose of this study was to investigate the effects of the design of abutment screw driver on the amount of time for insertion of screw driver into abutment screw head. Material and methods. Hexagonal and rectangular types of abutment screw drivers were used. The original abutment screw drivers were modified by grinding acute angle of the screw driver tip (modified drivers). Group 1 : hexagonal type abutment screw and original driver Group 2 : hexagonal type abutment screw and modified driver Group 3 : rectangular type abutment screw and original driver Group 4 : rectangular type abutment screw and modified driver UCLA lab analogues were located in acrylic resin block. The angulations of them were 0 and 20 degrees. The times needed for insertion were measured. Group 1 and 3 were used as controls. Results. 1. Group 2 showed shorter insertion time than group 1, regardless of implant angulations (p<.05). 2. Group 4 showed shorter insertion time than group 3, regardless of implant angulations (p<.05). Conclusion. Modified abutment screw drivers required less amount of time to insert screw driver into abutment screw head. Modification of abutment screw driver was beneficial.