• Title/Summary/Keyword: Heuristic search

Search Result 538, Processing Time 0.027 seconds

Design of Truss Structures with Real-World Cost Functions Using the Clustering Technique (클러스터링 기법을 이용한 실 경비함수를 가진 트러스 구조물의 설계)

  • Choi, Byoung Han;Lee, Gyu Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.213-223
    • /
    • 2006
  • Conventional truss optimization approaches, while often sophisticated and computationally intensive, have been applied to simple, minimum weight-cost models. These approaches do not perform well when applied to real-world trusses, which have costmodels that are complex and which often involve multiple objectives. Thus, this paper describes the optimization strategies that a clustering technique, which identifies members that are likely to have the same product type, uses for the optimal design of truss structures with real- world cost functions that consider the costs on the weight of the truss, the number of products in the design, the number of joints in the structures, and the costs required in the site.At first, the clustering technique is applied to identify the members and to generate a proper initial solution. A simple taboo search technique is then used, which attempts to generate the optimal solution by starting with the solution from the previous technique. For example, the proposed approach is a plied to a typical problem and to a problem similar to relative performances. The results show that this algorithm generates not only better-quality solutions but also more efficient ones

A Method for Optimal Moving Pattern Mining using Frequency of Moving Sequence (이동 시퀀스의 빈발도를 이용한 최적 이동 패턴 탐사 기법)

  • Lee, Yon-Sik;Ko, Hyun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.1
    • /
    • pp.113-122
    • /
    • 2009
  • Since the traditional pattern mining methods only probe unspecified moving patterns that seem to satisfy users' requests among diverse patterns within the limited scopes of time and space, they are not applicable to problems involving the mining of optimal moving patterns, which contain complex time and space constraints, such as 1) searching the optimal path between two specific points, and 2) scheduling a path within the specified time. Therefore, in this paper, we illustrate some problems on mining the optimal moving patterns with complex time and space constraints from a vast set of historical data of numerous moving objects, and suggest a new moving pattern mining method that can be used to search patterns of an optimal moving path as a location-based service. The proposed method, which determines the optimal path(most frequently used path) using pattern frequency retrieved from historical data of moving objects between two specific points, can efficiently carry out pattern mining tasks using by space generalization at the minimum level on the moving object's location attribute in consideration of topological relationship between the object's location and spatial scope. Testing the efficiency of this algorithm was done by comparing the operation processing time with Dijkstra algorithm and $A^*$ algorithm which are generally used for searching the optimal path. As a result, although there were some differences according to heuristic weight on $A^*$ algorithm, it showed that the proposed method is more efficient than the other methods mentioned.

Learning Material Bookmarking Service based on Collective Intelligence (집단지성 기반 학습자료 북마킹 서비스 시스템)

  • Jang, Jincheul;Jung, Sukhwan;Lee, Seulki;Jung, Chihoon;Yoon, Wan Chul;Yi, Mun Yong
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.179-192
    • /
    • 2014
  • Keeping in line with the recent changes in the information technology environment, the online learning environment that supports multiple users' participation such as MOOC (Massive Open Online Courses) has become important. One of the largest professional associations in Information Technology, IEEE Computer Society, announced that "Supporting New Learning Styles" is a crucial trend in 2014. Popular MOOC services, CourseRa and edX, have continued to build active learning environment with a large number of lectures accessible anywhere using smart devices, and have been used by an increasing number of users. In addition, collaborative web services (e.g., blogs and Wikipedia) also support the creation of various user-uploaded learning materials, resulting in a vast amount of new lectures and learning materials being created every day in the online space. However, it is difficult for an online educational system to keep a learner' motivation as learning occurs remotely, with limited capability to share knowledge among the learners. Thus, it is essential to understand which materials are needed for each learner and how to motivate learners to actively participate in online learning system. To overcome these issues, leveraging the constructivism theory and collective intelligence, we have developed a social bookmarking system called WeStudy, which supports learning material sharing among the users and provides personalized learning material recommendations. Constructivism theory argues that knowledge is being constructed while learners interact with the world. Collective intelligence can be separated into two types: (1) collaborative collective intelligence, which can be built on the basis of direct collaboration among the participants (e.g., Wikipedia), and (2) integrative collective intelligence, which produces new forms of knowledge by combining independent and distributed information through highly advanced technologies and algorithms (e.g., Google PageRank, Recommender systems). Recommender system, one of the examples of integrative collective intelligence, is to utilize online activities of the users and recommend what users may be interested in. Our system included both collaborative collective intelligence functions and integrative collective intelligence functions. We analyzed well-known Web services based on collective intelligence such as Wikipedia, Slideshare, and Videolectures to identify main design factors that support collective intelligence. Based on this analysis, in addition to sharing online resources through social bookmarking, we selected three essential functions for our system: 1) multimodal visualization of learning materials through two forms (e.g., list and graph), 2) personalized recommendation of learning materials, and 3) explicit designation of learners of their interest. After developing web-based WeStudy system, we conducted usability testing through the heuristic evaluation method that included seven heuristic indices: features and functionality, cognitive page, navigation, search and filtering, control and feedback, forms, context and text. We recruited 10 experts who majored in Human Computer Interaction and worked in the same field, and requested both quantitative and qualitative evaluation of the system. The evaluation results show that, relative to the other functions evaluated, the list/graph page produced higher scores on all indices except for contexts & text. In case of contexts & text, learning material page produced the best score, compared with the other functions. In general, the explicit designation of learners of their interests, one of the distinctive functions, received lower scores on all usability indices because of its unfamiliar functionality to the users. In summary, the evaluation results show that our system has achieved high usability with good performance with some minor issues, which need to be fully addressed before the public release of the system to large-scale users. The study findings provide practical guidelines for the design and development of various systems that utilize collective intelligence.

A Personal Memex System Using Uniform Representation of the Data from Various Devices (다양한 기기로부터의 데이터 단일 표현을 통한 개인 미멕스 시스템)

  • Min, Young-Kun;Lee, Bog-Ju
    • The KIPS Transactions:PartB
    • /
    • v.16B no.4
    • /
    • pp.309-318
    • /
    • 2009
  • The researches on the system that automatically records and retrieves one's everyday life is relatively actively worked recently. These systems, called personal memex or life log, usually entail dedicated devices such as SenseCam in MyLifeBits project. This research paid attention to the digital devices such as mobile phones, credit cards, and digital camera that people use everyday. The system enables a person to store everyday life systematically that are saved in the devices or the deviced-related web pages (e.g., phone records in the cellular phone company) and to refer this quickly later. The data collection agent in the proposed system, called MyMemex, collects the personal life log "web data" using the web services that the web sites provide and stores the web data into the server. The "file data" stored in the off-line digital devices are also loaded into the server. Each of the file data or web data is viewed as a memex event that can be described by 4W1H form. The different types of data in different services are transformed into the memex event data in 4W1H form. The memex event ontology is used in this transform. Users can sign in to the web server of this service to view their life logs in the chronological manner. Users can also search the life logs using keywords. Moreover, the life logs can be viewed as a diary or story style by converting the memex events to sentences. The related memex events are grouped to be displayed as an "episode" by a heuristic identification method. A result with high accuracy has been obtained by the experiment for the episode identification using the real life log data of one of the authors.

A QoS-based Inter-Domain Routing Scheme for Distributed Multimedia Applications in a High Wide Area Network (분산 멀티미디어 응용을 위한 대규모 고속 통신망에서의 QoS-근거 계층적 도메인간 라우팅 방식)

  • 김승훈;김치하
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.7B
    • /
    • pp.1239-1251
    • /
    • 1999
  • In this paper a scalable QoS-based hierarchical inter-domain routing scheme for distributed multimedia applications in a high speed wide area network. The problem of QoS-based routing is formulated as a multicriteria shortest path problem, known as NP-complete[21,30]. Our routing scheme consists of two phases. In Phase 1, two graph construction algorithms are performed to model the network under consideration as a graph. The graph contains a part of the network topology which is completely neglected or partially considered by existing routing schemes, thus maintaining more accurate topology information. In Phase 2, a heuristic call-by-call algorithm is performed for selecting a feasible path efficiently in depth first search-like manner on the graph and tailoring to each application's QoS requirements, beginning at a vertex that represents the source node. In this paper, a simple rule is also produced, by which the visiting order of outgoing edges at each vertex on the graph is determined. The rule is based on each edge's the minimum normalized slackness to the QoS requested. The proposed routing scheme extends the PNNI-type hierarchical routing framework. Note that our routing scheme is one of a few QoS-based hierarchical routing schemes that address explicitly the issue of selecting a path with multiple metrics.

  • PDF

Cost-Based Directed Scheduling : Part II, An Inter-Job Cost Propagation Algorithm (비용기반 스케줄링 : Part II, 작업간 비용 전파 알고리즘)

  • Suh, Min-Soo;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.1
    • /
    • pp.117-129
    • /
    • 2008
  • The cost-based scheduling work has been done in both the Operations Research (OR) and Artificial Intelligence (AI) literature. To deal with more realistic problems, AI-based heuristic scheduling approach with non-regular performance measures has been studied. However, there has been little research effort to develop a full inter-job cost propagation algorithm (CPA) for different jobs having multiple downstream and upstream activities. Without such a CPA, decision-making in scheduling heuristics relies upon local, incomplete cost information, resulting in poor schedule performance from the overall cost minimizing objective. For such a purpose, we need two types of CPAs : intra-job CPA and inter-job CPA. Whenever there is a change in cost information of an activity in a job in the process of scheduling, the intra-job CPA updates cost curves of other activities connected through temporal constraints within the same job. The inter-job CPA extends cost propagation into other jobs connected through precedence relationships. By utilizing the cost information provided by CPAs, we propose cost-based scheduling heuristics that attempt to minimize the total schedule cost. This paper develops inter-job CPAs that create and update cost curves of each activity in each search state, and propagate cost information throughout a whole network of temporal constraints. Also we propose various cost-based scheduling heuristics that attempt to minimize the total schedule cost by utilizing the cost propagation algorithm.

  • PDF

A Literature Review and Classification of Recommender Systems on Academic Journals (추천시스템관련 학술논문 분석 및 분류)

  • Park, Deuk-Hee;Kim, Hyea-Kyeong;Choi, Il-Young;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.139-152
    • /
    • 2011
  • Recommender systems have become an important research field since the emergence of the first paper on collaborative filtering in the mid-1990s. In general, recommender systems are defined as the supporting systems which help users to find information, products, or services (such as books, movies, music, digital products, web sites, and TV programs) by aggregating and analyzing suggestions from other users, which mean reviews from various authorities, and user attributes. However, as academic researches on recommender systems have increased significantly over the last ten years, more researches are required to be applicable in the real world situation. Because research field on recommender systems is still wide and less mature than other research fields. Accordingly, the existing articles on recommender systems need to be reviewed toward the next generation of recommender systems. However, it would be not easy to confine the recommender system researches to specific disciplines, considering the nature of the recommender system researches. So, we reviewed all articles on recommender systems from 37 journals which were published from 2001 to 2010. The 37 journals are selected from top 125 journals of the MIS Journal Rankings. Also, the literature search was based on the descriptors "Recommender system", "Recommendation system", "Personalization system", "Collaborative filtering" and "Contents filtering". The full text of each article was reviewed to eliminate the article that was not actually related to recommender systems. Many of articles were excluded because the articles such as Conference papers, master's and doctoral dissertations, textbook, unpublished working papers, non-English publication papers and news were unfit for our research. We classified articles by year of publication, journals, recommendation fields, and data mining techniques. The recommendation fields and data mining techniques of 187 articles are reviewed and classified into eight recommendation fields (book, document, image, movie, music, shopping, TV program, and others) and eight data mining techniques (association rule, clustering, decision tree, k-nearest neighbor, link analysis, neural network, regression, and other heuristic methods). The results represented in this paper have several significant implications. First, based on previous publication rates, the interest in the recommender system related research will grow significantly in the future. Second, 49 articles are related to movie recommendation whereas image and TV program recommendation are identified in only 6 articles. This result has been caused by the easy use of MovieLens data set. So, it is necessary to prepare data set of other fields. Third, recently social network analysis has been used in the various applications. However studies on recommender systems using social network analysis are deficient. Henceforth, we expect that new recommendation approaches using social network analysis will be developed in the recommender systems. So, it will be an interesting and further research area to evaluate the recommendation system researches using social method analysis. This result provides trend of recommender system researches by examining the published literature, and provides practitioners and researchers with insight and future direction on recommender systems. We hope that this research helps anyone who is interested in recommender systems research to gain insight for future research.

Development of Intelligent ATP System Using Genetic Algorithm (유전 알고리듬을 적용한 지능형 ATP 시스템 개발)

  • Kim, Tai-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.131-145
    • /
    • 2010
  • The framework for making a coordinated decision for large-scale facilities has become an important issue in supply chain(SC) management research. The competitive business environment requires companies to continuously search for the ways to achieve high efficiency and lower operational costs. In the areas of production/distribution planning, many researchers and practitioners have developedand evaluated the deterministic models to coordinate important and interrelated logistic decisions such as capacity management, inventory allocation, and vehicle routing. They initially have investigated the various process of SC separately and later become more interested in such problems encompassing the whole SC system. The accurate quotation of ATP(Available-To-Promise) plays a very important role in enhancing customer satisfaction and fill rate maximization. The complexity for intelligent manufacturing system, which includes all the linkages among procurement, production, and distribution, makes the accurate quotation of ATP be a quite difficult job. In addition to, many researchers assumed ATP model with integer time. However, in industry practices, integer times are very rare and the model developed using integer times is therefore approximating the real system. Various alternative models for an ATP system with time lags have been developed and evaluated. In most cases, these models have assumed that the time lags are integer multiples of a unit time grid. However, integer time lags are very rare in practices, and therefore models developed using integer time lags only approximate real systems. The differences occurring by this approximation frequently result in significant accuracy degradations. To introduce the ATP model with time lags, we first introduce the dynamic production function. Hackman and Leachman's dynamic production function in initiated research directly related to the topic of this paper. They propose a modeling framework for a system with non-integer time lags and show how to apply the framework to a variety of systems including continues time series, manufacturing resource planning and critical path method. Their formulation requires no additional variables or constraints and is capable of representing real world systems more accurately. Previously, to cope with non-integer time lags, they usually model a concerned system either by rounding lags to the nearest integers or by subdividing the time grid to make the lags become integer multiples of the grid. But each approach has a critical weakness: the first approach underestimates, potentially leading to infeasibilities or overestimates lead times, potentially resulting in excessive work-inprocesses. The second approach drastically inflates the problem size. We consider an optimized ATP system with non-integer time lag in supply chain management. We focus on a worldwide headquarter, distribution centers, and manufacturing facilities are globally networked. We develop a mixed integer programming(MIP) model for ATP process, which has the definition of required data flow. The illustrative ATP module shows the proposed system is largely affected inSCM. The system we are concerned is composed of a multiple production facility with multiple products, multiple distribution centers and multiple customers. For the system, we consider an ATP scheduling and capacity allocationproblem. In this study, we proposed the model for the ATP system in SCM using the dynamic production function considering the non-integer time lags. The model is developed under the framework suitable for the non-integer lags and, therefore, is more accurate than the models we usually encounter. We developed intelligent ATP System for this model using genetic algorithm. We focus on a capacitated production planning and capacity allocation problem, develop a mixed integer programming model, and propose an efficient heuristic procedure using an evolutionary system to solve it efficiently. This method makes it possible for the population to reach the approximate solution easily. Moreover, we designed and utilized a representation scheme that allows the proposed models to represent real variables. The proposed regeneration procedures, which evaluate each infeasible chromosome, makes the solutions converge to the optimum quickly.